实验目的:
熟悉迭代法的基本概念,并用迭代法求解方程、方程组的根。
实验内容:
1、自己构造2种不同的迭代格式求32的近似值,并比较收敛速度。
2、画出sin_cos__2的图像,并利用牛顿迭代法求出该方程的所有根。
3、对方程组A_b,设A的对角元素aii0,
令DDiag(a11,a22,,ann)为对角阵,
将方程组改写成D_(DA)_b,或_(IDA)_Db
用这种迭代格式求解方程组A_b,其中11
2111,b=0A11
并将结果与_M_f迭代格式的结果进行比较。
实验要求:
撰写实验报告
写出试验过程中所使用的Mathematica程序或语句和计算结果
第一题:
方法一:(牛顿迭代法)
In[1]:=f[__]:=_^3-2;
g[__]:=3_^2
_0=-2.;esp=10^(-6);
For[i=1,i<=11,i++,_1=_0-f[_0]/g[_0];
If[Abs[_1-_0]>esp,_0=_1,Break[]];Print[_1];]-1.16667-0.XXX.846585.241883.518852.39974
1.XXX.370231.268561.259981.25992
方法二:(弦位法)
In[2]:=f[__]:=_^3-2
Plot[f[_],{_,-2,2}]
FindRoot[f[_],{_,0,1}]
Out[3]=
Out[4]={→.}
第二题:
In[5]:=f[__]:=Sin[_]Cos[_]-_^2;
D[f[_],_]
Out[6]=-2_+Cos[_]^2-Sin[_]^2
In[7]:=f[__]:=Sin[_]Cos[_]-_^2;
22g[__]:=-2_+Cos[_]-Sin[_]
Plot[f[_],{_,-2,2}]
_0=0.4;esp=10^(-10);
For[i=1,i<=10,i++,_1=_0-f[_0]/g[_0];
If[Abs[_1-_0]>esp,_0=_1,Break[]];Print[_1];]Out[8]=
2.323441.071980.XXX.71406
0.714060.XXX.XXX,702207
第三题:
Jacob迭代格式:
In[9]:=SeideIterate[a_,b_List,_0_List,n_Integer]:=
Module[{ad=Length[a],i,j,k,var=_0},
For[i=1,iad,i++,If[a[[i,i]]0,Print["a[",i,",",i,"]=0."];Abort[]]];For[i=1,in,i++,Print[var];For[j=1,jad,j++,
var[[j]]=N[(b[[j]]-Sum[a[[j,k]]var[[k]],{k,ad}])/a[[j,j]]+var[[j]],10]];
a={{2,-1,1},{1,1,1},{1,1,-2}};b={0,0,0};_0={1,1,1};
SeideIterate[a,b,_0,20]
Out[10]={1,1,1}
{0.,-1.,-0.5}
{-0.25,0.75,0.25}
{0.25,-0.5,-0.125}
{-0.1875,0.3125,0.0625}
{0.125,-0.1875,-0.03125}
{-0.078125,0.109375,0.015625}
{0.046875,-0.0625,-0.}
{-0.,0.,0.5}
{0.015625,-0.,-0.3}
{-0.6,0.,0.63}
{0.1,-0.8,-0.81}
{-0.5,0.3,0.41}
{0.4,-0.8,-0.7}
{-0.57,0.27,0.352}
{0.46,-0.81,-0.176}
{-0.82,0.99,0.588}
{0.7,-0.29,-7.62939_10-6}
{-0.499,0.792,3.8147_10-6}
{0.323,-0.47,-1.90735_10-6}
Seidel迭代格式:
In[11]:=LSIterate[m_,f_List,f0_List,n_Integer]:=
Module[{i,var=f0,t=Table[{},{i,n}]},
For[i=1,in,i++,t[[i]]=var;var=XXX];t]
m={{0.33,0.11,0.22},{-0.33,0.56,0.11},{0,0.33,-0.33}};f={1,1,1};f0={0,0,0};LSIterate[m,f,f0,25]
Out[12]={{0,0,0},{1.,1.,1.},{1.66,1.34,1.},{1.9152,1.3126,1.1122},
{2.02109,1.22538,1.06613},{2.0363,1.13653,1.05255},
{2.02856,1.08026,1.02771},{2.01435,1.04857,1.01734},
{2.00389,1.03437,1.01031},{1.99733,1.0291,1.00794},
{1.99407,1.02805,1.00698},{1.99266,1.02843,1.00695},
{1.99224,1.02911,1.00709},{1.9922,1.02964,1.00727},
{1.99229,1.02997,1.00738},{1.99238,1.03014,1.00745},
{1.99244,1.03022,1.00749},{1.99248,1.03024,1.0075},
{1.99249,1.03024,1.0075},{1.9925,1.03024,1.0075},
{1.9925,1.03023,1.0075},{1.9925,1.03023,1.0075},
{1.9925,1.03023,1.0075},{1.9925,1.03023,1.0075},
{1.9925,1.03023,1.0075}}