您好,欢迎来到飒榕旅游知识分享网。
搜索
您的当前位置:首页模糊回归

模糊回归

来源:飒榕旅游知识分享网
int.j.prod.res.,2004,vol.42,no.5,1009–1027

Fuzzyregression-basedmathematicalprogrammingmodelforqualityfunctiondeployment

Y.CHENy,J.TANGz*,R.Y.K.FUNG§andZ.RENy

Qualityfunctiondeployment(QFD)isbecomingawidelyusedcustomer-drivenapproachandtoolinproductdesign.TheinherentfuzzinessinQFDmodellingmakesfuzzyregressionmoreappealingthanclassicalstatisticaltools.Anewfuzzyregression-basedmathematicalprogrammingapproachforQFDproductplan-ningispresented.First,fuzzyregressiontheorieswithsymmetricandnon-symmetrictriangularfuzzycoefficientsarediscussedtoidentifytherelationalfunctionsbetweenengineeringcharacteristicsandcustomerrequirementsandamongengineeringcharacteristics.Byembeddingtherelationalfunctionsobtainedbyfuzzyregression,amathematicalprogrammingmodelisdevelopedtodeterminetargetsofengineeringcharacteristics,takingintoconsiderationthefuzziness,financialfactorsandcustomerexpectationsamongthecompetitorsinproductdevelopmentprocess.TheproposedmodellingapproachcanhelpdesignteamassessrelationalfunctionsinQFDeffectivelyandreconciletradeoffsamongthevariousdegreeofcustomersatisfactionanddetermineasetofthelevelofattainmentofengineeringcharacteristicsforthenew/improvedproducttowardsahighercustomerexpectationwithindesignbudget.Thecomparisonresultsundersymmetricandnon-symmetriccasesandthesimulationanalysisaremadewhentheapproachisappliedtoaqualityimprovementproblemforanemulsificationdynamitepackingmachine.

1.Introduction

Theemergenceofaglobaleconomycharacterizedbyintenseinternationalmarketcompetitionandrapidtechnologicalchangeisforcingmanycompaniestoplacetheemphasisonnewproductsasasourceofnewsalesandprofits(TakeuchandNonaka1986).Thesecompaniesrealizethatitiscrucialfortheirsurvivaltodesignandmanufactureefficientlyproductspreferredbycustomersatacompetitivecostwithinshorttimeoverthoseofferedbycompetitors.Thekeytodothatsuccess-fullyistousecustomer-drivendesignandmanufacturingmethodology.Amongwhich,qualityfunctiondeployment(QFD)(Akao1990,HauserandClausing1998,Vairaktarakis1999)isawidelyusedcustomer-drivenapproachtobuildhighqualityintoproductduringthewholedesignandmanufacturingprocesses(Wassermann1993,MoskowitzandKim1997,Fungetal.1998).

Generally,QFDusesfoursetsofmatricescalledhouseofquality(HOQ)torelatethecustomerrequirements(CRs)toproductplanning,partsdeployment,process

RevisionreceivedJune2003.

yDepartmentofMechanicalEngineeringandzDepartmentofSystemEngineering,SchoolofInformationScience&Engineering,NortheasternUniversity(NEU),Shenyang,Liaoning110004,P.R.China.

§DepartmentofManufacturingEngineering&EngineeringManagement,CityUniversityof,83TatCheeAvenue,KongLoon,,P.R.China.

*Towhomcorrespondenceshouldbeaddressed.e-mail:jftang@mail.neu.edu.cn

InternationalJournalofProductionResearchISSN0020–73print/ISSN1366–588Xonline#2004Taylor&FrancisLtd

http://www.tandf.co.uk/journalsDOI:10.1080/002070310001619623

1010Y.Chenetal.

planningandmanufacturingoperations.ThefirstHOQmatrixwasmostfrequentlyemployedinindustries,whoseobjectiveistodeterminethetargetlevelsfortheengineeringcharacteristics(ECs)ofaproducttoachieveahigherlevelofoverallcustomersatisfaction.Itisacomplexdecisionprocesswithmultiplevariablestodeterminethetargetlevelsinpractice.Itiscurrentlyaccomplishedmainlyinasubjectiveadhocmannerorinaheuristicway,suchasprioritization-basedmethods,withtheaimofafeasibledesign,ratherthananoptimalone.Therefore,develop-mentofamoreeffectiveandreasonableprogrammingmodeltodeterminethetargetvaluesfortheECsofaproducttowardsthemaximumdegreeofcustomersatisfac-tionwithinlimitedrecoursesisusuallythefocusinthefirstHOQprocessplanning.

Wasserman(1993)formulatedtheQFDplanningprocessasalinearprogram-mingmodeltoselectthemixofdesignfeatures,toresultinthehighestlevelofcustomersatisfaction.ThemodelfocusesonprioritizingtheallocationofresourcesamongdesignfeaturesratherthandeterminingthetargetlevelsofECs.MoskowitzandKim(1997)proposedadecisionsupportprototypeforoptimizingproductdesignsbaseduponanintegratedmathematicalprogrammingformulationandsolu-tionapproach.Fungetal.(1998)suggestedafuzzyinferencemodeltofacilitatethedesigndecisionontargetvaluesforECswiththeuseofafuzzyrulebase.Tangetal.(2002)andFungetal.(2002)consideredafuzzyformulationcombinedwithagenetic-basedinteractiveapproachtoQFDplanning.TwofuzzyoptimizationmodelsfordeterminingtargetvaluesofECswithfinancialconsiderationaredevel-oped.Thesemodelsconsidernotonlytheoverallcustomersatisfaction,butalsotheenterprisesatisfactionwiththecostcommittedtotheproduct.ParkandKim(1998)presentedanintegrateddecisionmodelforselectinganoptimalsetofECsusingamodifiedHOQmodel.

MostofthosemodelsandmethodsmentionedabovewereimplicitlyassumedthattherelationshipfunctionsbetweenCRsandECsandamongECscouldbeidentifiedusingengineeringknowledge.Itwouldbedifficulttojustifythisassump-tioninageneralsituation.EspeciallywhenagivenHOQcontainslargenumberofCRsandECs,manytradeoffshavetobemadeamongthedegreesofcustomersatisfactionaswellasamongtheimplicitorexplicitrelationshipsbetweenECsandCRsandamongECs,andhenceitisdifficulttoidentifyrelationshipfunctions.Moreover,theserelationshipsaretypicallyvagueandimpreciseinpracticalsitua-tion.Thevaguenessorimpreciseness(Chanetal.1999,Fungetal.1999,Temponietal.1999,VangegasandLabib2001,ChanandWu2002)arisesmostlyfromthefactthattheCRstendtobesubjective,qualitativeandnon-technical,andtheyneedtobetranslatedintotheECs,inmorequantitativeandtechnicalterms.Further,dataavailableforproductdesignareoftenlimited,inaccurateorvagueatbest.

TheinherentfuzzinessinQFDmodellingmakesfuzzyregressionmoreappealingthanclassicalstatisticaltools.Fuzzyregressionanalysisreferstoasetofmethodsbywhichestimatesaremadeforthemodelparametersfromknowledgeaboutthevaluesofagiveninput–outputdataset.Thegoalanalysisis(1)tofindanappro-priatemathematicalmodeland(2)todeterminethebest-fittingcoefficientsofthemodelfromthegivendata(TanakaandWatada1998).Henceforth,Kimetal.(2000)proposedafuzzymulticriteriamodellingapproachforQFDplanningusingfuzzylinearmodelswithsymmetrictriangularfuzzynumbercoefficients.Inmoregeneralcases,thesymmetrictriangularcoefficientmaynotbesuitableandefficienttomodeltheserelationshipsfunctions.Moreover,theapproachistechnicallyonesidewithoutconsiderationofthedesignbudget,resultinginanunreasonableandunreliableQFD

Fuzzyregressionmodelforqualityfunctiondeployment1011

planninginpractice.Infact,costsandbudgetsforachievingtargetlevelsofECsforaproductareconstrained.Therefore,thefinancialfactorisalsoanimportantconsiderationandshouldnotbeneglectedinQFDplanning.

Inthepresentpaper,thefuzzylinearregressionwithsymmetrictriangularfuzzycoefficientsisfirstconsideredtomodeltherelationalfunctionsbetweenECsandCRsandamongECs,andthenthesymmetrictriangularfuzzycoefficientisextendedtonon-symmetrictriangularfuzzycoefficients.ThedesignbudgetandcustomerexpectationsamongthecompetitorsaretakenintoconsiderationintheQFDprod-uctplanning.Thecomparisonresultsundersymmetricandnon-symmetriccasesandthesimulationanalysisaremadewhentheproposedmodellingapproachisappliedtoaqualityimprovementproblemofanemulsificationdynamitepackingmachine.

Therestofthispaperisorganizedasfollows.Insection2,thegeneralQFDproblemisdefinedformallyandafuzzymulti-objectivemodelisformulatedandillustrated.Section3describeshowtoidentifytherelationshipsbetweenECsandCRsandamongECsusingfuzzylinearregressiontheorycombinedwithfuzzyoptimizationtheorywithsymmetrictrianglefuzzycoefficients.Fuzzylinearregres-sionwithnon-symmetricfuzzycoefficientsisdevelopedinsection4tomodeltherelationalfunctionforQFDproductplanning.Theresultsobtainedfrombothsymmetricandnon-symmetriccasesonthequalityimprovementproblemofanemulsificationdynamitepackingmachineareanalysedandcomparedinsection5.Finally,theconclusionsarepresentedinthesection6.

2.Modelformulations2.1.Problemdefinition

Todescribetheproblemclearly,thenotationusedinthefirstHOQissummarizedasfollows:CRiECjComprxjyiwiSrljcjCjCB

ithcustomerrequirement,i¼1,2,...m,jthengineeringcharacteristic,j¼1,2,...n,rthcompetitor,r¼1,2,...l,levelofattainmentoftheECj,

customerperceptionofthedegreeofsatisfactionoftheCRi,relativeimportanceoftheCRi,andarescaledsuchthat0i¼1wi¼1,

degreeofoverallcustomersatisfactionoftherthcompetitor,r¼1,2,...l,targetvalueofECj,j¼1,2,...n,costcoefficientofxj,j¼1,2,...n,

costfunctionforachievingxj,j¼1,2,...n,totalcostofproductdevelopment,budgetofproductdevelopment.

ThebasicconceptofthefirstHOQintheproductdesignistotranslatethedesiresofcustomerintoECs.Letfi(i¼1,2,...m)beafunctionalrelationshipbetweenyiandthelevelsofattainmentofECs,i.e.yi¼fi(x1,x2,xn)andgj(j¼1,2,...,n)arethefunctionalrelationshipbetweenxjandotherlevelsofattainmentofECs,i.e.xj¼gj(x1,...,xjÀ1,...,xn).TheproductdevelopmentprocessbasedonQFDistodetermineasetofx1,x2,...,xnforECsofthenew/improvedproducttomatchorexceedthedegreeofoverallcustomersatisfactionofallcompetitorsinthetargetmarketwithlimitedorganizationalresources.Itisacomplexdecisionprocesswith

1012Y.Chenetal.

multiplevariables,requiringtrade-offandoptimizeallkindsofconflictscontainedinHOQ.LetSbethedegreeofoverallcustomersatisfactionfor(y1,y2,...,ym),theprocessofdeterminingattainmentleveloftargetvaluesofECsforaneworimprovedproductinQFDcanbeformulatedasanoptimizationproblemasfollows:

8

maxðSðy1,y2,...,ymÞÀmaxSrÞ>>r¼1,...l<

s:t::yi¼fiðx1,x2,ÁÁÁxnÞ,i¼1,...,m,ð1Þ>x¼gðx,...,x,x,...,xÞ,j¼1,...,n>j1jÀ1jþ1n:j

qeðxÞ 0,e¼1,...,pwhereqe(x)istheethorganizationalresourceconstraintandpisnumberoforganizationalresourceconstraints.

2.2.Objectivefunction

ThedegreeofoverallcustomersatisfactionS(y1,y2,...,ym)canbeobtainedbyaggregatingthedegreesofcustomersatisfactionwithindividualCRs,i.e.:

Sðy1,y2,...ymÞ¼

mXi¼1

wisiðyiÞ,

ð2Þ

wheresi(yi)isanindividualvaluefunctiononCRi.ForeachCR,anumericalvalue

ofyi(i¼1,2,...,m)isassignedtoindicatethedegreeofsatisfactionofCRiincomparisonwiththecompetitors.Thisnumericalvaluecanbechosenfromaposi-tivescale[a,b](e.g.1–5).Therefore,si(yi)canbescaledinsuchawaythat

max

siðyminÞ¼1andcanbeconfiguredas:iÞ¼0andsiðyi

󰀁󰀂.󰀁󰀂

minmaxmin

siðyiÞ¼yiÀyiyiÀyii¼1,2,...mð3ÞandS(y1,y2...ym)canbewrittenasfollows:

Sðy1,y2,ÁÁÁymÞ¼

mXi¼1

wiyiÀ

󰀁

ymini

󰀂.󰀁󰀂

maxminyiÀyi

ð4Þ

andthusS(y1,y2,...ym)isalsoavaluebetween0and1,with0beingtheworstand1thebest.Hence,theobjectivefunctioncanbeexpressedas:

maxS¼

0

mXi¼1

wiyiÀ

󰀁

ymini

󰀂.󰀁

ymaxi

À

ymini

󰀂

ÀmaxSr

r¼1,...,l

ð5Þ

2.3.NormalizingthetargetvaluesofECs

NormalizationoftargetvaluesofECsisthatchanging(lj¼1,...,n),thecurrenttargetvalueofECj,intothelevelofattainmentxj¼(j¼1,...,n),suchthat0 xj 1,(j¼1,...,n).TargetvaluesofECsforaproductcanbeclassifiedintotwocategories,i.e.positiveandnegative.Forpositiveones,theperformanceofECispositivelyproportionaltothetargetvalueofEC,andfornegativeones,theperfor-manceofECisthereversetothetargetvaluesofEC.Forexample,thedesignteamhopestoreducetheenergyrequiredtoclosethedoorofacarandincreasethewaterresistanceofthedoor.ThetwocategoriesoftargetvaluesofECscanbenormalized

Fuzzyregressionmodelforqualityfunctiondeployment

accordingtoequations(6)and(7),respectively:

ljmaxÀlj

xj¼max

ljÀljminljÀljmin

xj¼max

ljÀljmin

1013

ð6Þð7Þ

whereljmaxandljmincanbedeterminedbytheconsiderationofcompetitionrequire-mentandtechnologyfeasibility(Zhou1998).ForthefirstcategoryofECs,ljmaxismaximumtargetvalueoftheECjtomatchcompetitors’performance,andljministheminimumobtainable.Whereas,forthesecondcategoryofECs,ljminisaminimumtargetvalueoftheECjtomatchcompetitors’performance,andljmaxisthemaximumobtainable.

2.4.Costsandbudgetsconstraint

Assumethattherearemultipleresourcesrequiredforsupportingthedesignofaproduct,includingdesignengineers,developmenttime,advancedequipmentandotherfacilities.Atthelevelofstrategicplanning,thesetypesofresourcescanbeaggregatedinfinancialterms.Forsimplicity,assumethatthecostfunctionCjforachievingthelevelofattainmentoftheECjisscaledlinearlytothelevelofattainmentxj,whichresultsin:

CjðxjÞ¼

nXj¼1

cjxj,

ð8Þ

wherethecostcoefficientcjisdefinedasthecostrequiredwhentheECjisfully

improved,i.e.whenoneunitoflevelofattainmentoftheECj,thecostiscj,andcanbedeterminedaccordingtotheexperienceofthedesignteamorbytesting.AssumingthatthetotaldesigncostCforaproductdevelopmentorimprovementisconstrainedtoabudgetB,itisformulatedas:

nXj¼1

CjðxjÞ¼

nXj¼1

cjxj B:

ð9Þ

2.5.Mathematicalmodel

Takingintoaccountthecostconstraint,theQFDplanningproblemcanbeformulatedasalinearprogrammodel(LP):

8.m0Pmin>maxS¼wiðyiÀyiÞðymaxÀymin>iiÞÀmaxSr>>r¼1,...,li¼1>>>s:t::yi¼fiðx1,x2,...,xnÞ,i¼1,...,m>>>jj1jÀ1jþ1n

:ð10ÞnnPP>>C¼CðxÞ¼cxÀB 0jjjj>>>j¼1j¼1>>>minmax>>:yi yi yi,i¼1,...,m

0 xj 1,j¼1,...,nIfthevalueofanobjectivefunctionispositive,i.e.S>0,thenthemodelLPdeterminesaset0ofx1,x2,...,xnwithamaximumdegreeofoverallcustomersatis-faction.ElseS<0andLPdeterminesasetofx1,x2,...,xnthatminimizesthe

01014Y.Chenetal.

differenceofthecustomersatisfactionfromanyofthecompetitors.Thefunctionalrelationships(fi¼1,2,...,m)andgj(j¼1,2,...,n)canbeidentifiedusingfuzzylinearregressionandfuzzyoptimizationwithsymmetrictrianglenumbercoefficients(seesection3)ornon-symmetrictrianglenumbercoefficients(seesection4).

3.

ParameterestimationwithsymmetrictrianglefuzzycoefficientsConsiderafuzzylinearfunction:

~iÞ¼A~i¼fiðX,A~i0þA~i1x1þÁÁÁþA~inxn,Y

ð11Þ

~iisthefuzzyoutputofthedegreeofcustomersatisfactionoftheCRi,whereY

X¼ðx1,x2,...,xnÞTisthereal-valuedinputvectorofthelevelofattainmentof

~i¼ðA~i0,A~i1,...,A~inÞisavectoroffuzzynumbers.Theregressionanal-ECs,andA

ysisprobleminHOQisdefinedasfollows.Givenanumberoflcrispdatapoints

~i0,A~i1,...,A~inwillbeðX1,yi1Þ,...,ðXr,yirÞ,...,ðXl,yilÞ,asetoffuzzyparametersA

determinedsuchthatequation(11)bestfitsthegivendatapointsinasenseofgoodnessoffitundersomecriteria,wherebyXr¼ðx1r,...,xjr,...,xnrÞisthesetoflevelofattainmentofECsoftherthcompetitor,theelementxjristhelevelofattainmentoftheECjoftheCompr,andyiristhedegreeofcustomersatisfactionof

~ijhastriangularmembershipfunctions,itcanbeuniquelytheCRioftheCompr.IfACULUC~ij¼ðaLdefinedbyAij,aij,aijÞ.Here,aijisthelowerlimit,aijistheupperlimitandaij~ijthatsatisfies󰀁~ðaCisthecentrevalueofAAijijÞ¼1.Thesymmetryofthefuzzy

~ijleadsustoestablishthefollowingtworelations:coefficientA

LU

aCij¼ðaijþaijÞ=2CLUCaSij¼aijÀaij¼aijÀaij,

ð12Þð13Þ

S~whereaCijisthecentrevalueandaijisthespreadvalueofAij.Thecentrevalue

~ij,whilethespreadrepresentstheprecisiondescribesthemostpossiblevalueofA

~ij.Then,thesymmetricfuzzynumbercoefficientA~ijcanbeuniquelydescribedbyofA

SLU~ij¼ðaC~apairofparameters,eitherAij,aijÞorAij¼ðaij,aijÞ.Inthissense,onecanalso~i¼ðA~i0,A~i1,...,A~inÞasavectorformintermsrepresentthefuzzycoefficientsetA

SCSCCCCSSSS~ofaCijandaijasAi¼ðai,aiÞ,hereai¼ðai1,ai2,...,ainÞandai¼ðai1,ai2,...,ainÞ.

Forsymmetrictriangularfuzzynumbers,themembershipfunction󰀁A~ijfor~ijði¼1,2,...,m;j¼1,2,...,nÞcanbedescribedas:A

8>ÀaijÞ=aS,aCÀaS aij aC1ÀðaCijijijijij,><

SCCS,ð14Þ󰀁A~ijðaijÞ¼1ÀðaijÀaCijÞ=aij,aij aij aijþaij>>:

0,otherwise:

~iÞinequation(11)canbeexpressedasThefuzzyoutputfromthelinearmodelfiðX,A

followsaccordingtotheextensionprincipleandfuzzyarithmeticonfuzzynumbers:

~iÞ¼ðfiCðXÞ,fiSðXÞÞ,~i¼fiðX,AY

ð15Þ

~iÞ,wherefiCðXÞandfiSðXÞarethecentreandspreadofthefuzzylinearmodelfiðX,A

respectively,andgivenas:

CC

fiCðXÞ¼aCi0þai1x1þÁÁÁþainxnSSfiSðXÞ¼aSi0þai1jx1jþÁÁÁþainjxnj:

ð16Þð17Þ

Fuzzyregressionmodelforqualityfunctiondeployment1015

~idefinedin(11)hastheform:ThenthemembershipfunctionofY

!8

nX>>C>aC!>ijxjrþai0Àyir >nn>XX󰀃󰀃>j¼1>CCSS󰀃>,axþaÀaxjr󰀃Àa1À>jriji0i0ijn>X󰀃󰀃>>SS󰀃j¼1j¼1󰀃>aþa>i0ijxjr>>>j¼1>>> !>>n>X>>C> yir aC>ijxjrþai0,>>>j¼1>>> !>nn>XX>j¼1CCCC>>,axþa axþa y1À>jrirjriji0iji0n>XS>>Sj¼1j¼1>ai0þaijjxjrj>>>>j¼1>>>>n>X󰀃󰀃>>SS󰀃>þaþaxjr󰀃,>i0ij>>>j¼1>>>>>>0,otherwise:>>>:

ð18Þ

Theaimofthefuzzyregressionmethod(Yenetal.1999)withnon-fuzzydataisto

~ÃdeterminetheparametersAijsuchthatthetotalspreadoffuzzyoutputforalldatais

minimizedwhileeachindividualfuzzyoutputyir(i¼1,2,...,m;r¼1,2,...,l)isassociatedwithamembershipgreaterthanh.Itcanbeexpressedas:

\"#nl󰀃XX󰀃

󰀃xjr󰀃ð19ÞminZ¼aSaSi0þij

j¼1

r¼1

s:t::󰀁Y~iðyirÞ!h,

r¼1,2,...,l,ð20Þ

where0 h<1denotesthedegreeoffitnessoftheestimatedfuzzylinearmodeland

issubjectivelypreselectedbyadeignteamaccordingtotheirengineeringknowledge.

~irwithadegreeAphysicalinterpretationofhisthatyirisinthesupportintervalofy

ofmembershipofatleasthforalll.Theconstraint(20)isrewrittenas:

~i0󰀆hþ½A~i1󰀆hx1rþÁÁÁþ½A~in󰀆hxnr,yir2½fiðXrÞ󰀆h¼½A

r¼1,2,...,l,

ð21Þ

where[E]histheh–levelsetofafuzzynumber.Equation(21)canalsobefurther

expressedas:

! !

nnXX󰀃󰀃

󰀃󰀃ÀaCð1ÀhÞaSaSaCr¼1,2,...,nð22Þi0þijxjri0þijxjr!Àyir,

j¼1

j¼1

and

ð1ÀhÞaSi0þ

nXj¼1

! !

nX󰀃󰀃

󰀃󰀃þaCaSaCijxjri0þijxjr!yir,

j¼1

r¼1,2,...,n:ð23Þ

1016Y.Chenetal.

Henceforth,thefuzzyregressionproblemaimingtodeterminethefunctionalrela-tionshipsfi(i¼1,2,...,m)istransformedintoalinearprogram:

\"#8nl󰀃XX󰀃>SS>󰀃󰀃>minZ¼aþax>jr,i0ij>>>r¼1> j¼1! !>>nn>XX>CLP1j¼1j¼1> ! !>>nnXX>>>>ð1ÀhÞaSþaSjxjrjþaCþaCr¼1,2,...,l,i0iji0ijxjr!yir,>>>j¼1j¼1>>:SS

ai0,aij!0,j¼1,...,n:

ð24Þ

Similarly,onecandetermineacorrelationfunctionamongthedegreeofattainmentofatargetlevelofECsusingfuzzylinearregression.Assumethat:~jÞ¼A~j¼gjðXj,A~j0þA~j1x1þÁÁÁþA~j,jÀ1xjÀ1þA~j,jþ1xjþ1þÁÁÁþA~jnxn,X

ð25Þ

~jisthefuzzyoutputofthedegreeofattainmentoftargetleveloftheECj,whereX

Xj¼ðx1,...,xjÀ1,xjþ1,...,xnÞTisthereal-valuedinputvectorofthelevelofattain-~j¼ðA~j0,A~j1,...,A~j,jÀ1,A~j,jþ1,...,A~jnÞisasetofsymmetricfuzzymentofECs,andA

triangularnumbertobedeterminedbysolvingthefollowinglinearprogrammingmodel:

8󰀄󰀅nl󰀃󰀃PP>󰀃xur󰀃,>aSminZ¼aS>j0þju>>u¼1k¼1>>u¼j>>1010>>>>nn>󰀃󰀃CBCPP>CBSS󰀃>󰀃u¼1u¼1LP2u¼ju¼j>0101>>>>>nn󰀃󰀃CBCPP>CBSS󰀃>󰀃>ð1ÀhÞ@aj0þajuxurAþ@aj0þaCr¼1,2,...,l,>juxurA!xjr,>>u¼1u¼1>>u¼ju¼j>>:SS

aj0,aju!0,u¼1,...,jÀ1,jþ1,...n:

ð26Þ

Hence,thefunctionalrelationshipsfi(i¼1,2,...,m)andgj(j¼1,2,...,n)resultedfromthemodelsLP1andLP2aregivenas:

n󰀁󰀁󰀂X󰀂

CSCS~~i¼fiðx1,...,xnÞ¼ai0,ai0þyaij,aijxj,

j¼1

n󰀁󰀁󰀂X󰀂

CSCS

~jðx1,...,xjÀ1,xjþ1,...,xnÞ¼ai0,ai0þ~j¼gaju,ajuxu,x

u¼1

u¼j

i¼1,2,...,mð27Þ

j¼1,2,...,n:ð28Þ

Obviously,ifthecentrevalueisonlyconsideredandthespreadvalueisneglectedinthefuzzyregression,thefunctionalrelationshipsfi(i¼1,2,...,m)andgj(j¼1,2,...,n)aresubstitutedinamoresimpleway.

Fuzzyregressionmodelforqualityfunctiondeployment1017

4.Extensiontonon-symmetricfuzzycoefficientscase

~ijcanbeItwasassumedabovethateachsymmetrictriangularfuzzycoefficientA

S~ij¼ðaCuniquelydescribedbytwoparametersAij,aijÞ.However,ingeneral,these

trianglesarenotsymmetric,andtheyaredescribedbythreeparametersinterms

PULPR

ofðaLij,aij,aijÞorðsij,aij,sijÞ.Theformergivesthepeakpointandtheleftandrightpoints,andthelattergivesthepeakandtheleft-andright-sidespread,wherebyaPijis

PLP

thepeakpointatwhich󰀁A~ijðaijÞ¼1.sijistheleft-sidespreadfromthepeakpointaij,

LPLRUP

andsRijrepresentstheright-sidespread.Sincesij¼aijÀaijandsij¼aijÀaij,onecanuseonespreadasthebasetonormalizetheotherone.ChoosesLijasthebase,

R

thensijcanbeexpressedas:

L

sRij¼kjsij,

ð29Þ

wherekjistheskewfactorandhaspositiverealnumbers.Theselectionofthevalues

forkjisbasedontheknowledgeofthedesignproblemanddatacharacteristicsof

P~ijcanbedescribedbythetripletsðsLECs.ThenAij,aij,kjÞ.Themembershipfunction

~ijhastheform:foreachA

8LPLP>1ÀðaPijÀaijÞ=sij,aijÀsij aij aij,>><

LPPLð30Þ󰀁A~iðaijÞ¼1ÀðaijÀaPijÞ=kjsij,aij aij aijþkjsij,>>>:

0,otherwise:Followingtheextensionprinciple,thefuzzymembershipfunctionfortheoutputcan

beobtainedas:

8 !

nX>>P>aP>!! ijxjrþai0Àyir >nn>XX>󰀃󰀃j¼1>PL>󰀃󰀃 yir,aPsL1À>ijxjrþai0Àsi0þijxjrn>X󰀃󰀃>>L󰀃j¼1j¼1L>sþsxjr󰀃>iji0>>>j¼1>> !>>nX>󰀃󰀃>P>󰀃󰀃> aPijxjrþai0,>>>j¼1< !

n󰀁YX~iðyirÞ¼P>>yirÀaP !ijxjrþai0>>nX>j¼1>>>,aPxjrþaP1Àiji0 yir>nXL󰀃󰀃>>j¼1>>k0sLkjsij󰀃xjr󰀃>i0þ>>j¼1>>! ! >>nn>XX󰀃󰀃>PL>󰀃󰀃,> aPkjsL>ijxjrþai0þk0si0þijxjr>>>j¼1j¼1>:

0,otherwise:

ð31ÞFromtheaboveexpression,onegetstheconstraintsoftheregressionas:

!nX

P

1ÀaPijxjrþai0Àyir

j¼1

sLi0þ

nXj¼1

󰀃󰀃L󰀃sijxjr󰀃!h

ð32Þ

1018and

Y.Chenetal.

yirÀ1À

nXj¼1

!

PaPijxjrþai0

k0sLi0þ

nXj¼1

󰀃󰀃kjsLijxjr

󰀃󰀃!h,ð33Þ

Aftersimplification,equations(32)and(33)havetheform:

ð1ÀhÞsLi0þand

ð1ÀhÞk0sLi0þ

nXj¼1nXj¼1

! !nX󰀃󰀃

󰀃󰀃ÀaPsLaPijxjri0þijxjr!Àyir,

j¼1

r¼1,2,...,l:ð34Þ

󰀃󰀃

󰀃󰀃þaPkjsLijxjri0þ

!

nXj¼1

!aPijxjr

!yir,

r¼1,2,...,l:

ð35Þ

Now,theproblemistominimizethetotalspreadsinamulti-inputfuzzyoutput

function.Thesumofthespreadisgivenby:

Z¼ð1þk0ÞsLi0þ

nXj¼1

\"

#

l󰀃X󰀃󰀃xjr󰀃:ð1þkjÞsLij

r¼1

ð36Þ

Henceforth,withanon-symmetrictrianglefuzzynumber,thefunctionalrelation-shipsfi(i¼1,2,...,m)canbeobtainedbysolving:

\"#8nl󰀃XX󰀃>LL>󰀃xjr󰀃,>Þsþð1þkÞsminZ¼ð1þk>0ji0ij>>>j¼1r¼1>>>> ! !>>nnXX>󰀃󰀃>>󰀃󰀃ÀaPj¼1j¼1LP3

>> ! !>>nn>XX󰀃󰀃>>LL󰀃>ð1ÀhÞksþksxjr󰀃þaPaPr¼1,2,...,l,>i0iji0þijxjr!yir,0j>>>j¼1j¼1>>>>:LL

si0,sij!0,j¼1,...,n:

ð37Þ

Ifoneselectsallthevaluesofkjtobe1,thenconstrains(34)and(35)areequivalentthose󰀃for󰀃asymmetriccaseandtheexpressionofZbecomesPntoLPlL󰀃2ðsi0þj¼1sijr¼1xjr󰀃Þ,whichistwicethemagnitudeofthesymmetriccase.Sinceamultiplicationconstantwillnotchangetheresultoftheminimizationprocess,thenon-symmetricisreducedtothesymmetrictriangularcase,i.e.LP3isequivalenttoLP1.

Fuzzyregressionmodelforqualityfunctiondeployment1019

Similarly,thefunctionalrelationshipsgj(j¼1,2,...,n)canbeobtainedbysolving:

8\"#

nl󰀃XX󰀃>>󰀃xur󰀃,>ð1þkjÞsLminZ¼ð1þk0ÞsL>j0þju>>>u¼1r¼1>>u¼j>>>>>1010>>>>nn>X󰀃󰀃CBPX>CBLLP>󰀃󰀃>Àaþsxþaxs:t::ð1ÀhÞs@A!Àxjr,@A>ururj0juj0ju<

>>>>0101>>>>nnX>󰀃󰀃CBPX>BCLL>>ð1ÀhÞ@k0sj0þkjsju󰀃xur󰀃Aþ@aj0þaPjuxurA!xjr,>>>u¼1u¼1>>u¼ju¼j>>>>>>:LL

sj0,sju!0,u¼1,...,jÀ1,jþ1,...,n:

u¼1u¼j

u¼1u¼j

r¼1,2,...,l,

LP4

r¼1,2,...,l,

ð38Þ

5.Illustratedexamplesandcomparisonanalysis

5.1.BuildingtheHOQforanemulsificationdynamitepackingmachine

Toclarifytheperformanceofthemodellingapproach,apracticalproductdevel-opmentofanemulsificationdynamitepackingmachineiscitedasanexampletodemonstratetheeffectivenessoftheproposedmethod.Theresultsarepresentedandillustratedhere.

Acorporationisundergoinganewtypeofanemulsificationdynamitepackingmachine.Accordingtothesurveyinthemarketplaceandthecollectionofcom-plaintsfromusers,therearefourmajorCRs,i.e.improvethequalityofpackingdynamite(CR1),increasetheefficiencyofpackingdynamite(CR2),reducethepack-ingnoise(CR3),andincreasetherigidityofthemachine(CR4).SevenECsareidentified:improvetheprecisionofthemouldingofclip(EC1),improvetheprecisionofpackingdynamite(EC2),increasethecontrolforceofpackingdynamite(EC3),improvetheefficiencyofpackingdynamite(EC4),increasethehardnessofthepressinghammer(EC5),reducethenoiseofcampowertransmission(EC6),andreducetheheightofthemachinebed(EC7).Inthemeantime,fivemaincompetitors,i.e.Comp1(ourcorporation),Comp2,Comp3,Comp4,andComp5areselected.TheweightsoffourCRsaredeterminedusingtheHierarchicalAnalyticProcess(AHP)method(Armacastetal.1994),engineeringmeasuredatahavebeencollectedfromthecompanyanditsmaincompetitorsacquiredbytesting,andcustomerperceptionofthedegreeofsatisfactionofeachCRshasbeenscaledfrom1(worst)to5(best).Theobjectiveoftheproblemistodevelopanewtypeofemulsificationdynamitepackingmachine,i.e.determinenewtargetvaluesfortheECs,tomatchorexceedthecustomerexpectationofallcompetitorsinthetargetmarketwiththelimiteddesignbudget.TheHOQofanemulsificationdynamitepackingmachineasshowninfigure1isfilledwiththesedata.ThenegativeandpositivesignonECsmeansthedesignteamhopestoreduceandincreasethetargetvaluesofECs,respectively.

−−+ + + −−ECs

ECECECECx11 x22 x33 4 ECECECx4x55 x66 x7

7 EC1EC2•oniECt3••alECe4rECor5•CEC6

EC7

Benchmarking informationCRsWeighs•••Relation

Comp1Comp2Comp3Comp4Comp5min max CR1 y1 0.46•••3.4 4 1.9 3.7 3.6 1 5 CR2 y2 0.28•3.1 3 1.8 2.9 3.9 1 5 CR3 y3 0.162.2 3.7 4.3 1.8 3.5 1 5 CR4 y4 0.101.6 3.7 3.3 3.7 4 1 5 Unitesm-2m-2N ns-1HRC dB m •48.60 66.05 34.90 .30 67.70 S (%)

Comp 111 7 58 90 55 75 1.9 Comp 28 6 65 85 50 68 1.7 gCompsin312 9 60 70 50 55 1.8 rCompere49 8 62 80 45 80 1.7 eunsaCompi510 10 65 75 55 70 1.6 genmin 6 4 55 60 40 50 1.5 EMMax 15 12 70 100 60 90 2 Figure1.Houseofqualityofanemulsificationdynamitepackingmachine.

1020Y.Chenetal.Fuzzyregressionmodelforqualityfunctiondeployment

5.2.

1021

Parameterestimationoffunctionalrelationshipswithsymmetrictrianglefuzzynumbercoefficients

ThenormalizedtargetvaluesofECsaccordingtoequations(6)and(7)aregivenasfollows:

230:440:630:200:750:750:380:2060:780:750:670:630:500:550:60767

7X¼60:330:380:330:250:500:880:4067

40:670:500:470:500:250:250:6050:560:250:670:380:750:500:80

.Usingfuzzylinearregression,theparametersinthefunctionalrelationshipscanbeobtainedbysolvingLP1andLP2foraspecifiedvalueofh.Forexample,y1isassociatedwithx1,x2,andx3(figure1),LP1forf1isgivenas:8SSSS

þ2:78aþ0:51aþ2:34aminZ¼a>10111213>>>>SSSCCCC>s:t::0:5aS>10þ0:22a11þ0:32a12þ0:10a13Àa10À0:44a11À0:63a12À0:20a13!À3:4>>>>SSSSCCCC>>0:5aþ0:22aþ0:32aþ0:10aþaþ0:44aþ0:63aþ0:20a>1011121310111213!3:4>>>>SSSCCCC>0:5aS>10þ0:39a11þ0:38a12þ0:34a13Àa10À0:78a11À0:75a12À0:67a13!À4>>>>SSSCCCC>>0:5aS>10þ0:39a11þ0:38a12þ0:34a13þa10þ0:78a11þ0:75a12þ0:67a13!4>>>>SSSCCCC<0:5aS

10þ0:17a11þ0:19a12þ0:17a13Àa10À0:33a11À0:38a12À0:33a13!À1:9

SSSCCCC>>0:5aS>10þ0:17a11þ0:19a12þ0:17a13þa10þ0:33a11þ0:38a12þ0:33a13!1:9>>>>SSSCCCC>0:5aS>10þ0:34a11þ0:25a12þ0:24a13Àa10À0:67a11À0:50a12À0:47a13!À3:7>>>>SSSCCCC>>0:5aS>10þ0:34a11þ0:25a12þ0:24a13þa10þ0:67a11þ0:50a12þ0:47a13!3:7>>>>SSSCCCC>0:5aS>10þ0:28a11þ0:13a12þ0:34a13Àa10À0:56a11À0:25a12À0:67a13!À3:6>>>>SSSSCCCC>>0:5aþ0:28aþ0:13aþ0:34aþaþ0:56aþ0:25aþ0:67a>1011121310111213!3:6>>:SSSS

a10,a11,a12,a13!0

UsingthesoftwareMathprogram,thesolutionsetisgivenby:

SSSC

aS10¼0:74795,a11¼0,a12¼0,a13¼0,a10¼0:88072,CCaC11¼5:97588,a12¼À0:33350,a13¼À1:36986,

wheretheminimizedvalueoftheobjectivefunctiononthespreadis0.41553.This

~10¼ð0:74795,0:88072Þ,A~11¼ð0,5:97588Þ,solutiongivesthefuzzycoefficientsasA

~12¼ð0,À0:33350Þ,andA~13¼ð0,À1:36986Þ.A

Toexaminehowtheselectionofhinfluencesthevaluesofcentresandspreads~ofAij,severaldifferentvaluesforhareselected.Thecorrespondingresultsaregiven

~ijasshownintable1.OnecanseethathdoesnotchangethecentreofeachA

SS

butinfluencesthevaluesofa10andZ.Thesmallerhis,thesmallerarea10andZ.Similarly,f2,f3,f4andg2,g4,g6canbedeterminedasshownintable2,inwhichthenumbersinparenthesesrepresentthespreadsath¼0.5.Becausex1,x3,x5andx7arecorrelatedwithnootherECs,thereforeg1,g3,g5andg7arezero.

1022

h0.10.30.50.7

aS100.415530.534250.747951.24658

aS110000

aS120000

aS130000Table1.

Y.Chenetal.

aC100.880720.880720.880720.88072

aC115.975885.975885.975885.97588

aC12À0.33350À0.33350À0.33350À0.33350

aC13À1.36986À1.36986À1.36986À1.36986

Z0.415530.534250.747951.24658

Influenceofhonsolutions.

y1Interceptx1x2x3x4x5x6x70.88(0.75)5.98À0.33À1.37

y20.(0.83)2.450.961.25

y31.00(0.80)

y41.25(0.90)

x20.01(0.26)

x40.22(0.17)0.87

x60.(0.41)

0.97

4.20

4.00

À0.30

À0.87

Table2.Assessedfiandgjwithsymmetricfuzzynumbers(h¼0.5).

5.3

Parameterestimationoffunctionalrelationshipswithnon-symmetrictrianglefuzzynumbercoefficients

Similarly,onecanobtainthecoefficientsinthefunctionalrelationshipsusingfuzzylinearregressionwithanon-symmetrictriangularfuzzynumber.Accordingtoaprioriknowledge,thedesignteamselectsthefollowingvaluesfork0,k1,k2andk3:k0¼1.2,k1¼1.7,k2¼1.5andk3¼1.2.TheLP3forf1isgivenastheform:8LLLminZ¼2:20sL>10þ7:51s11þ6:28s12þ5:15S13>>>>>LLLPPPP>s:t::0:5sL>10þ0:22s11þ0:32s12þ0:10s13þa10þ0:44a11þ0:63a12þ0:20a13!3:4>>>>>LLLPPPP>>0:6sL10þ0:42s11þ0:60s12þ0:19s13Àa10À0:44a11À0:63a12À0:20a13!À3:4>>>>>>>0:5sLþ0:39sLþ0:38sLþ0:34sLþaPþ0:78aPþ0:75aPþ0:67aP1011121310111213!4>>>>>LLLPPPP>>0:6sL>10þ0:75s11þ0:72s12þ0:s13Àa10À0:78a11À0:75a12À0:67a13!À4>>>>>LLLPPPP<0:5sL

10þ0:17s11þ0:19s12þ0:17s13þa10þ0:33a11þ0:38a12þ0:33a13!1:9>LLLPPPP>0:6sL>10þ0:32s11þ0:36s12þ0:32s13Àa10À0:33a11À0:38a12À0:33a13>>>>>LLLPPPP>0:5sL>10þ0:34s11þ0:25s12þ0:24s13þa10þ0:67a11þ0:50a12þ0:47a13>>>>>LLLPPPP>>0:6sL10þ0:s11þ0:48s12þ0:45s13Àa10À0:67a11À0:50a12À0:47a13>>>>>LLLLPPPP>>0:5sþ0:28sþ0:13sþ0:34sþaþ0:56aþ0:25aþ0:67a1011121310111213>>>>>LLLPPPP>>0:6sL>10þ0:s11þ0:24s12þ0:s13Àa10À0:56a11À0:25a12À0:67a13>>>:LLLL

s10,s11,s12,s13!0

!À1:9!3:7!À3:7!3:6!À3:6

Fuzzyregressionmodelforqualityfunctiondeployment

k01.21.51.92.81

k11.41.82.53.61

k21.21.62.72.91

k31.52.32.83.21

sL100.679950.598360.515820.393661.24658

LL

sL11s12s13

1023

aP13

Z1.495

1.4951.4951.4951.495

aP100.914710.955510.996781.057860.88072

aP115.975885.975885.975885.975885.97588

aP12À0.33350À0.33350À0.33350À0.33350À0.33350

000000000000000À1.36986À1.36986À1.36986À1.36986À1.36986

Table3.

k01.22.63.9111111111

k11111.62.23.8111111

k21111111.82.53.8111

k31111111111.92.73.6

Influenceofthevaluesofskewfactorssetonsolutions.sL10

LL

sL11s12s13

aP100.91471

1.046931.102050.880720.880720.880720.880720.880720.880720.880720.880720.88072

aP115.975885.975885.975885.975885.975885.975885.975885.975885.975885.975885.975885.97588

aP12À0.33350À0.333450À0.333450À0.333450À0.333450À0.333450À0.333450À0.333450À0.333450À0.333450À0.333450À0.333450

aP13À1.36986À1.36986À1.36986À1.36986À1.36986À1.36986À1.36986À1.36986À1.36986À1.36986À1.36986À1.36986

Z1.4951.4951.4951.4951.4951.4951.4951.4951.4951.4951.4951.495

0.679950.415530.305280.747950.747950.747950.747950.747950.747950.747950.747950.74795000000000000000000000000000000000000

Table4.Influenceofk0andkjonsolutions.

BysolvingtheaboveLP3,thefuzzycoefficientscanbeobtainedasfollows:~10¼ð0:695,0:91471,1:2Þ,A~11¼ð0,5:97588,1:7Þ,A~12¼ð0,À0:333450,1:5Þ,A

~13¼ð0,À1:36986,1:2Þ,A

wheretheminimumvalueoftheobjectivefunctiononthespreadis1.495.Thecoefficientsunderdifferentvaluesofkjaregivenasshownintable3.

Analysingtheaboveresults,onecanfindthatinthecaseofnon-symmetricmembershipfunctions,astheskewfactorsincrease,thespreadsL10decreasesandthecentrebecomeslarge.Besides,thevariouskjonlyhasinfluenceonaP10butnotonPPP

a11,a12,a13andZ.

Table4showsthespreadsandcentresatdifferentsettingsofskewfactors,whereineachsettingthreeoftheskewfactorsarefixedat1andoneofthemvaries.

Itcanbeconcludedthatk0isthedominantskewfactor.Keepingk0constantandchanginganyoneofk1,k2andk3separatelyorallatthesamewillnotproduceany

~ij.variationsinA

Similarly,f2,f3,f4andg2,g4,g6canalsobeassessedwithanon-symmetriccase(table5)inwhichnumbersinparenthesesrepresentthespreadsath¼0.5andg1,g3,g5andg7arezero.

5.4.Analysisofresults

AssumethatthebudgetBis55units,maxr¼1,...,lS¼67:7%(figure1)andthecostcoefficientsforeachECareexpressedasfollows:

c1¼20,c2¼25,c3¼10,c4¼15,c5¼5,c6¼30,c7¼8:

1024

y1Interceptx1x2x3x4x5x6x70.91(0.68)5.98À0.33À1.37

y20.58(0.75)2.450.961.25

Y.Chenetal.

y31.04(0.72)

y41.29(0.82)

x20.02(0.23)

x40.23(0.16)0.87

0.97

4.20

4.00

Table5.

Assessedfiandgjwithnon-symmetricfuzzynumbers(h¼0.5).

À0.30

À0.87x60.91(0.38)

Substitutingtheresultsofsections5.2and5.3,respectively,theproblemLP(10)ofsection2.5isgivenas:

80

max>S¼0:12y1þ0:07y2þ0:04y3þ0:02y4À0:25À0:677>>>>>s:t::5:98x1À0:33x2À1:37x3þ0:88¼y1>>>>>>2:45x3þ0:96x4þ1:25x5þ0:¼y2>>>>>>4:20x6þ1:00¼y3>>>>>>4:00x7þ1:25¼y4><

0:97x4þ0:01¼x2>>>>0:87x2À0:30x6þ0:22¼x4>>>>>>À0:87x4þ0:¼x6>>>>>>20x1þ25x2þ10x3þ15x4þ5x5þ30x6þ8x7À50 0>>>>>>1 yi 5,i¼1,...,4>>>:

0 xj 1,j¼1,...,7

.Table6summarizestheresultsobtainedfortheabovetwocases.

Comparetheexistingdesignsofthepresentexamplecompanyanditscompeti-torswiththoseobtainedbysolvingtheLPmodelandcheckwherethepresentcompanyinitiallystandsvis-a`-visitscompetitors.ThecustomercompetitiveanalysisinformationcontainedintheHOQinfigure1indicatesthatthepresentcompany’sproductcurrentlyisweakiny1,y3andy4,andstronginy2,andhasthelowervalueofS(48.60%)amongallfivecompetitors.TheSvaluesofthedesignfromtheLPmodelinbothsymmetric(3.99%þ67.7%¼71.69%)andnon-symmetric(6.70%þ67.7%¼74.40%)casesaremuchhigherthanourcurrentSvalue(48.60%),andexceedthatofComp5,andbecomethehighestamongalloffivecompetitors.

ComparedwithComp1’scurrentdesign,theLPmodelinbothcasesimprovedy1andy3bytradingoffy2andy4toachievethedegreeofcustomersatisfactionwithlimitedfinicalbudgets.ThetargetvaluesofECsweredeterminedtoachievesuchavaluetrade-offinthemostefficientway.Forexample,theresultforanon-symmetriccaseyieldasignificantlyhighery1thaninComp1’scurrentdesign(from3.4to5.0)

Fuzzyregressionmodelforqualityfunctiondeployment

maxS(%)

Symmetric

Non-symmetric

3.996.70Table6.

01025

x5x6x7y1y2y3y4x1x2x3x45.002.873.521.250.780.330.310.331.000.600.005.002.944.051.290.780.230.370.221.000.720.00SolutionstotheprogrammingmodelLP.

becauseCR1isthemostimportantinalloffourCRs.Thevalueofy1ispositivelyrelativewithx1andnegativelywithx2andx3(table5).Toincreasey1,theresultingdesignimprovedthelevelofx1(from0.44to0.70),andloweredx2(from0.63to0.23)andx3(from0.20to0.02).Thevalueofx2ispositivelyrelativewithx4andnegativelywithx6(table5).Thedecreasingofx2resultsindecreasingx4(from0.75to0.22)andincreasingx6(from0.38to0.72).Thevalueofy2ispositivelyrelativewithx3,x4andx5,sinceincrementalchangesofy2resultedfromtheimprovementofx5(from0.75tothemaximumvalue,1)couldnotcompensateforthedecreasingchangesfromthedecreasingofx3andx4,y2decreased(from3.1to2.1).Thevalueofy3isonlypositivelyrelativewithx6,soitisnecessarythaty3increased(from2.2to4.05).BecauseCR4istheleastimportantinallCRs,financialbudgetswereassignedtoy1,y2andy3basedonprioritization,theresultingdesignlowersy4(from1.6to1.29).Fromtheaforementionedanalysis,onecanseethatthemodelconsidersallsuchinteractionsbetweenCRsandECsaswellasthoseamongECssimultaneously,anddeterminestheoptimallevelsofECs,accordingtowhichthetargetvaluesofECsforthenewtypeofemulsificationdynamitepackingmachinearedetermined.Accordingtotheresultsobtainedbythisapproach,thedesignteamcaneasilyassignthedesigntargettoeachECstobalancethedesignresources(financialbudget)andothertechnicalrequirementsandcompetitors.0Table6showsthatSis3.99%inthesymmetricand6.70%inthenon-symmetriccase.ThisimpliesthatifoneappliesthesymmetriccasetoQFDmodelling,systemicuncertaintiesandambiguitiescannotbemodelledsufficientlyandreasonablyusing0symmetriccoefficients,andhencethequalityofthetargetdesign(S)isunderesti-0mated(i.e.ÁS¼3.99%À6.70%¼À2.71%).Henceforth,itcanbeconcludedthatusingnon-symmetrictrianglefuzzymodellingcanencompassmoretypesofsystema-ticuncertaintiesandambiguitiesthatcannotbemodelledefficientlyusingsymmetrictrianglefuzzycoefficients,i.e.thenon-symmetriccaseismoregeneralandreasonablethanthesymmetriccase.

6.Conclusion

Anewfuzzyregression-basedmathematicalprogrammingapproachforQFDwaspresentedtotakeintoconsiderationthefuzziness,financialfactorsandcustomerexpectationsamongthecompetitorsinproductdevelopmentprocess.Themodellingapproachappliesthefuzzylinearregressiontheorycombinedwithfuzzyoptimiza-tiontheorywithsymmetricornon-symmetrictriangularfuzzycoefficientstomodeltherelationalfunctionsbetweenECsandCRsandamongECs,whichismorescientificandreasonablethanusingengineeringknowledgeintraditionalQFDmethodology.Theapproachcanhelpadesignteamreconciletradeoffsamongthevariousdegreesofcustomersatisfactionanddetermineasetofthelevelofattain-mentofECsforthenew/improvedproducttosatisfyabudgetconstraintandmatchorexceedthecustomerexpectationofallcompetitorsinthetargetmarket.

1026Y.Chenetal.

Simulationshowsthatthefuzzyregressionwithnon-symmetrictrianglefuzzycoeffi-cientscanencompassmoretypesofsystematicuncertaintiesandambiguitiesthatcannotbemodelledefficientlyusingsymmetrictrianglefuzzycoefficients.Theapproachcouldbeapplicabletoawidevarietyofdesignproblemswheremultipledesigncriteriaandfunctionaldesignrelationshipsareinvolvedinanuncertain,qualitativeandfuzzyway.

Acknowledgements

ThepaperwasjointfinanciallysupportedbytheNationalNaturalScienceFoundationofChina(NSFC70002009),theExcellentYouthTeacherProgramofMinistryofEducationofChinaandtheShenyangNaturalScienceFoundation(1020036-1-03)andpartlybyaStrategicResearchGrant(SRG)fromCityUniversityof(projectno.7001227).TheauthorsareindebtedtotheEditorandrefereesforinvaluablecommentsandsuggestionsonthepaper.References

AKAO,Y.,1990,QualityFunctionDeployment:IntegratingCustomerRequirementsinto

ProductDesign,trans.G.Mazur(Cambridge,MA:ProductivityPress).

ARMACOST,R.L.,COMPONATION,P.,MULLENS,M.andSWART,W.,1994,AnAHPframework

forprioritizingcustomerrequirementsinQFD:anindustrializedhousingapplication.IIETransactions,26,72–79.

CHAN,L.K.,KAO,H.P.,NG,A.andWU,M.L.,1999,Ratingtheimportanceofcustomer

needsinqualityfunctiondeploymentbyfuzzyandentropymethods.InternationalJournalofProductionResearch,37,2499–2518.

CHAN,L.K.andWU,M.L.,2002,Qualityfunctiondeployment:aliteraturereview.European

JournalofOperationalResearch,143,463–497.

FUNG,R.Y.K.,LAW,D.S.T.andIP,W.H.,1999,Designtargetsdeterminationforinter-dependentproductattributesinQFDusingfuzzyinference.IntegratedManufacturingSystems,10,376–384.

FUNG,R.Y.K.,POPPLEWELL,K.andXIE,J.,1998,Anintelligenthybridsystemforcustomer

requirementsanalysisandproductattributetargetsdetermination.InternationalJournalofProductionResearch,36,13–34.

FUNG,R.Y.K.,TANG,J.,TU,Y.andWANG,D.,2002,Productdesignresourceoptimization

usinganon-linearfuzzyqualityfunctiondeploymentmodel.InternationalJournalofProductionResearch,40,585–599.

HAUSER,J.R.andCLAUSING,D.,1988,Thehouseofquality.HarvardBusinessReview,May–

June,63–73.

KIM,K.J.,MOSKOWITZ,H.,DHINGRA,A.andEVANS,G.,2000,Fuzzymulticriteriamodelsfor

qualityfunctiondeployment.EuropeanJournalofOperationalResearch,121,504–518.MOSKOWITZ,H.andKIM,K.J.,1997,QFDoptimizer:anovicefriendlyqualityfunction

deploymentdecisionsupportsystemforoptimizingproductdesign.ComputersandIndustrialEngineering,33,1–655.

PARK,T.andKIM,K.J.,1998,Determinationofanoptimalsetofdesignrequirementsusing

houseofquality.JournalofOperationsManagement,16,469–581.

TAKEUCHI,H.andNONAKA,I.,1986,Thenewproductdevelopmentgame.HarvardBusiness

Review,January–February,137–146.

TANAKA,H.andWATADA,J.,1998,Possibilisticlinearsystemsandtheirapplicationstothe

linearregressionmodel.FuzzySetsandSystem,27,275–2.

TANG,J.,FUNG,R.Y.K.andXU,B.,2002,Anewapproachtoqualityfunctiondeployment

planningwithfinancialconsideration.ComputerandOperationsResearch,29,1447–1463.

TEMPONI,C.,YEN,J.andTIAO,W.A.,1999,Houseofquality:afuzzylogic-basedrequire-mentsanalysis.EuropeanJournalofOperationalResearch,117,340–324.

VAIRAKTARAKIS,G.L.,1999,Optimizationtoolsfordesignandmarketingofnew/improved

productsusingthehouseofquality.JournalofOperationsManagement,17,5–663.

Fuzzyregressionmodelforqualityfunctiondeployment1027

VANGEGAS,L.V.andLABIB,A.W.,2001,Afuzzyqualityfunctiondeployment(FQFD)model

forderivingoptimumtargets.InternationalJournalofProductionResearch,39,99–120.WASSERMANN,G.S.,1993,OnhowtoprioritizedesignrequirementsduringtheQFDplanning

process.IIETransactions,25,59–65.

YEN,K.K.,GHOSHRAY,S.andROIG,G.,1999,Alinearregressionmodelusingtriangular

fuzzynumbercoefficients.FuzzySetsandSystems,106,167–177.

ZHOU,M.,1998,FuzzylogicandoptimizationmodelsforimplementingQFD.Computersand

IndustrialEngineering,35,237–240.

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- sarr.cn 版权所有 赣ICP备2024042794号-1

违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务