您好,欢迎来到飒榕旅游知识分享网。
搜索
您的当前位置:首页果树中花青苷合成研究进展

果树中花青苷合成研究进展

来源:飒榕旅游知识分享网
龙源期刊网 http://www.qikan.com.cn

果树中花青苷合成研究进展

作者:王会良 何华平(等)

来源:《湖北农业科学》2013年第20期

摘要:对果树中花青苷合成方面的相关研究进展进行了综述。分别从结构基因和调节基因两个方面对花青苷合成的分子机理进行了总结和分析,同时探讨了环境因子对花青苷积累的影响,对花青苷合成机理中的疑点及研究前景进行了展望。 关键词:花青苷;合成;基因;机理;果树

中图分类号:S66;Q946.83 文献标识码:A 文章编号:0439-8114(2013)20-4857-05 Advances on the Research of Anthocyanin Synthesis in Fruit Trees

WANG Hui-liang,HE Hua-ping,GONG Lin-zhong,WANG Fu-rong,LIU Yong,ZHU Xiao-min

(Institute of Fruit and Tea,Hubei Academy of Agricultural Sciences/Fruit and Tea Subcenter of Hubei Innovation Center of Agricultural Science and Technology,Wuhan 430209, China) Abstract: In this paper, the advance on the research of anthocyanin synthesis in fruit trees is reviewed. The molecular mechanism of anthocyanin synthesis is summarized and analyzed from both structural gene and regulatory gene. Influences of environmental factors on anthocyanin accumulation are discussed. Doublts of mechanisms of anthyocyanin synthesis and prospects of research is proposed. Key words: anthocyanin; synthesis; gene; mechanism; fruit trees

果实颜色是果实的重要经济性状。花青苷是类黄酮合成途径的合成产物之一,是多种花和果实中红色、紫色、蓝色等颜色的呈色物质。花青苷在植物中扮演重要的角色,如吸引传粉、种子传播、减少UV光损伤、抗病原体的侵染等[1,2]。此外,花青苷还具有抗氧化活性,并且对人体健康具有潜在好处,如可预防癌症、炎症、冠状动脉硬化等疾病[3-6]。

近年来,花青苷合成机理研究成为当前研究的热点,在这方面研究的科研成果,对于加深人们对花青苷合成机理的认识,加快培育富含花青苷的优良果树新品种具有重要意义。在果树方面,花青苷的很多结构基因及各种调节基因已经被克隆并进行了详细的分析验证,其中,对苹果和葡萄的相关研究较为深入。研究表明,部分调节基因的表达受环境因子的影响,如光照、温度、营养状况等[7-13],因此,环境因子也可影响花青苷的合成。为此,本文对近几年来有关果实花青苷积累的调控机理研究进行了综述。

龙源期刊网 http://www.qikan.com.cn

1 花青苷形成的分子机理 1.1 花青苷生物合成途径

花青苷合成(图1)起始于苯丙氨酸解氨酶(PAL)催化的苯丙氨酸到肉桂酸的反应,PAL是苯丙烷类代谢途径中的第一个酶。而后在肉桂酸羟化酶(C4H)和对香豆酰CoA连接酶(4CL)的催化下形成香豆素-CoA,1分子香豆素-CoA与来自乙酸的3分子丙二酰-CoA在查尔酮合成酶(CHS)的催化下形成黄色的4-羟基查尔酮,查尔酮异构酶(CHI)催化4-羟基查尔酮形成无色的柚苷配基,即4,5,7-3羟基黄烷酮。这是第一个稳定的类黄酮化合物,它经不同酶的修饰可形成不同的类黄酮化合物。这些修饰作用包括羟基化、甲基化、酰基化、糖基化及还原作用,在各种植物中能形成3 500种以上不同类黄酮衍生物。其中,形成花青苷的途径是柚苷配基在黄烷酮-3-羟化酶(F3H)的作用下转化为二氢黄酮醇(DHK),DHK在类烷酮-3′-羟化酶(F3′H)的作用下形成二氢栎皮酮(DHQ),DHQ经二氢黄酮醇-4-还原酶(DFR)还原成无色花青素,再经花青素合成酶(ANS) 合成显色的花青素。最后在葡萄糖基转移酶(UFGT)的作用下生成各种花青苷[14-21]。 1.2 结构基因与花青苷的合成

起初,关于花青苷合成机理的研究,主要集中在代谢途径上相关结构基因的研究。前人研究表明,拟南芥、苹果、荔枝、葡萄等植物中的PAL、CHI、DFR、UFGT等花青苷合成相关酶与花青苷的合成关系密切,但对不同酶在花青苷合成中的作用大小,研究结果却不尽一致[22-24]。

Honda等[25]分离了CHS、F3H、DFR、ANS、UFGT等5个花青苷合成的结构基因,首次报道了花青苷合成酶基因间协调表达与苹果着色的关系,在果实成熟阶段,红色品种红玉和富士中的表达量远远高于在黄色品种王林中的表达量,花青苷合成相关基因的表达水平与花青素浓度呈正相关。Kim等[26]从cDNA文库中分离了F3H、DFR、ANS、UFGT的cDNA序列,推导的氨基酸序列与其他植物基因序列具有高度的同源性。Takos等[27]克隆了3个与缩合单宁(CT)合成相关的酶基因和2个无色花青素还原酶基因(MdLAR1、MdLAR2),发现在果实成熟过程中,当其他路径基因高水平转录、花青苷大量积累的时候,CT的丰度却很少。此外,利用已知的结构基因序列合成引物,从葡萄、苹果、草莓、蓝莓中克隆了CHS、CHI、F3H、DFR、ANS、UFGT等结构基因[19,28,29]。

许多研究表明[23,30,31],果树中花青苷合成途径与玉米、矮牵牛、拟南芥、金鱼草中的合成途径基本相同,结构基因同源性很高。Kondo等[32]研究指出,在苹果果实发育过程中,CHS、F3H、DFR、ANS、UFGT 5个基因协同表达,这些基因的表达水平与花青苷积累呈正相关。不同果实中甚至是果实的不同发育阶段、果实的不同组织部位,这些酶的功能也可能不尽相同[33]。

龙源期刊网 http://www.qikan.com.cn

1.3 调节基因与花青苷的合成

与其他物种一样,果树中花青苷结构基因的表达受一个由MYB转录因子(TF)、基本螺旋-环-螺旋TF(bHLH)、WD重复蛋白组成的复合物(MBW)的调控,对苹果和葡萄中关于转录因子调控花青苷合成的研究较为深入,很多转录因子已经被分离验证(图1)。 在苹果上,成功分离得到3个MYB基因MdMYB1、MdMYBA、MdMYB10,经验证表明这3个基因都属于R2R3类基因,并且调控花青苷的积累[23,30]。Wang等[34]认为这3个基因互为等位基因。该基因的甲基化程度差异决定了苹果果皮的不同着色模式[35]。苹果果实红肉性状与MdMYB10启动子区的一个增强子原件有关,并且此基因具有自我调节功能[36]。苹果果皮红色受MdMYB1 和MdMYBA的调控[23,37]。前人研究表明,MYB类需借助于bHLH伴侣蛋白来促进花青苷的积累。在苹果上,克隆得到2个类似bHLH共转录因子(MdbHLH3和MdbHLH33),这2个因子参与激活结构基因及MYB10的表达,并且MYB10与MdbHLH3的结合比与MdbHLH33的结合更能有效地促进结构基因的转录[30]。 在葡萄上,VvMYBA1和VvMYBA2特异调控UFGT基因的表达,从而调节果实着色。果皮着色深浅与VvMYBA1和VvMYBA2之间的加性效应有关[38-40],两基因同时失活会导致果皮因无法合成花青苷而呈白色[41]。其他有些MYB因子(如VvMYB5a和VvMYB5b)参与了苯丙氨酸反应途径的支路反应,这也包括花青苷生成途径。转化VvMYB5a基因的烟草,其单宁含量增加[42]。Deluc等[43]研究表明VvMYB5b基因参与调控花青苷和原花青苷的合成。葡萄上已经分离得到了2个bHLH蛋白(VvMYCA1、VvMYC1)和2个WD蛋白(VvWDR1、VvWDR2)。VvMYCA1和VvWDR1对花青苷的合成都具有正调控作用,VvWDR1并不直接作用于结构基因,而可能是通过与MYB/bHLH结合成复合体的方式起作用,VvMYCA1则可能是调控UFGT和ANR的表达。其他果实上也对MYB类因子进行了研究,如梨[44]、杨梅[45]、草莓[46]等。研究表明,部分MYB类基因对花青苷的合成具有负调控作用,Wang等[47]的研究表明,苹果中MdMYB17基因的表达减少了花青苷的积累。 2 外在因素对花青苷合成的影响

光照是影响花青苷合成最重要的环境因子之一[48,49]。完全不照光的果实中,没有花青苷的合成,光照强度低于全光照的50%时,随着光照强度的增强,花青苷浓度增加[50]。不同着色强度品种花青苷合成对光强的需求量不同,深红色品种着色比浅红色品种容易,在较低的光强下也能较好着色[33]。光照影响花青苷合成在基因转录水平上起作用,但光影响结构基因还是调控基因尚未研究清楚[51]。柳蕴芬等[52]研究表明,套袋明显抑制了桃果肉红色的形成,套袋果实成熟时a*值为10.32,仅为不套袋果的19.4%;但如果套袋果实在采收前15 d摘袋,则见光后的果实果肉花青苷合成能力迅速恢复,采收时花青苷含量达到248.85 nmol/g。杜纪红等[53]的研究则表明,油桃果实套袋遮光处理后20 d,果皮中花青苷含量迅速下降并接近于0,此后一直保持较低的水平,直到果实成熟时略有回升,其含量仅为对照的2%。Zhou等

龙源期刊网 http://www.qikan.com.cn

[54]的研究表明,经黑暗处理后,红色桃叶片中花青苷合成途径上结构基因的表达出现了下降趋势。

光质对花青苷的合成有着重要作用。红光(R)照射离体套袋红富士苹果果实不着色,紫外光UVA(>320 nm)灼伤果实果皮而变褐色;UVB(280~320 nm)及其组合光源刺激果实PAL酶活性增加,促进糖含量增长,并使果实花青苷大量积累,促进红富士苹果着红色。白光对红富士苹果果实PAL酶活性、花青苷及糖分含量的增加也有一定促进作用,但不如UVB及其组合光源照射效果好[55]。

温度在很大程度上影响了花青苷的合成,并一定程度上影响花青苷的稳定性。温度对花青苷合成的影响比较复杂,相对低温促进花青苷的合成,但也并不完全如此。温度对于葡萄[56]、矮牵牛[57]、血橙[8]、玫瑰[58]等植物中营养器官内花青苷的积累具有重要作用。在苹果、梨上,低温处理增加了果实中的花青苷含量,并促进了结构基因的表达[9,59,60]。高温处理的红叶桃叶片,花青苷生物合成基因的表达受到抑制[54]。Cripps pink苹果采后用高压钠灯照射,6 ℃较20 ℃处理花青苷积累多,而嘎拉和皇家嘎拉苹果在紫外光-B(280~320 nm)照射下,20 ℃较10 ℃花青苷积累多[61]。Aki Queen李果实在着色开始的1~3周内,果皮内花青苷合成对温度敏感[62],在此前后,高温对果实着色均没有太大的影响。 3 小结

发展富含花青苷的功能食品越来越为大家所关注。基于此,分离得到调控花青苷积累的转录因子,并深入揭示花青苷合成的调控网络迫在眉睫。近年来,果树中花青苷研究进展迅速,苹果、葡萄等的花青苷合成途径已较为清楚,光照、温度等外界因素对花青苷合成的影响也有了进一步的研究,有些问题已较为清晰。但是,果树中分离得到的转录因子还十分有限,并且它们与光照、温度等外界因子的交互作用还有待进一步研究。通过深入研究外界环境因子与花青苷积累的相互作用关系,可以给人们提供很好的人工调控果实着色的新思路、新方法。通过研究控制花青苷合成的突变基因,有望开发出可用于分子标记辅助育种的分子标记技术,这对于加快红肉果实的果树育种具有重要意义。 参考文献:

[1] REGAN B C,JULLIOT C,SIMMEN B,et al.Fruits,foliage and the evolution of primate colour vision[J].Philos Trans R Soc Lond B Biol Sci,2001,356(1407):229-283. [2] WINKEL-SHIRLEY B.Flavonoid biosynthesis.A colorful model for genetics,biochemistry,cell biology,and biotechnology[J].Plant Physiol,2001,126(2):485-493.

龙源期刊网 http://www.qikan.com.cn

[3] BUTELLI E,TITTA L,GIORGIO M,et al.Enrichment of tomato fruit with health-promoting anthocyanins by expression of select transcription factors[J].Nat Biotechnol,2008,26:1301-1308.

[4] LIU R H,LIU J,CHEN B.Apples prevent mammary tumors in rats[J].J Agric Food Chem,2005,53(6):2341-2343.

[5] NIJVELDT R J,VAN NOOD E,VAN HOORN D E,et al.Flavonoids: A review of probable mechanisms of action and potential applications[J].Am J Clin Nutr,2001,74(4):418-425.

[6] RASMUSSEN S E,FREDERIKSEN H,STRUNTZE KROGHOLM K,et al.Dietary proanthocyanidins: Occurrence,dietary intake,bioavailability,and protection against cardiovascular disease[J].Mol Nutr Food Res,2005,49(2):159-174.

[7] JEONG S T,GOTO-YAMANOTO G,KOBAYASHI S,et al.Effects of plant hormones and shading on the accumulation of anthocyanins and expression of anthocyanin biosynthetic genes in grape berry skins[J].Plant Sci,2004,167(2):247-252.

[8] LO PIERO A R,PUGLISI I,RAPISARDA P,et al.Anthocyanins accumulation and related gene expression in red orange fruit induced by low temperature storage[J]. J Agr Food Chem, 2005,53(23):9083-9088.

[9] UBI B E,HONDA C,BESSHO H,et al.Expression analysis of anthocyanin biosynthetic genes in apple skin: Effect of UV-B and temperature[J].Plant Sci,2006,170(3):571-578. [10] GUO J,HAN W,WANG M H.Ultraviolet and environmental stresses involved in the induction and regulation of anthocyanin biosynthesis: A review[J]. Afr J Biotechnol,2008, 7(25):4966-4972.

[11] BUREAU S,RENARD C M G C,REICH M,et al.Change in anthocyanin

concentrations in red apricot fruits during ripening[J].LWT-Food Sci Technol,2009,42(1):372-377.

[12] MORENO F P,MONAGAS M,BLANCH G P,et al.Enhancement of anthocyanins and selected aroma compounds in strawberry fruits through methyl jasmonate vapor treatment[J].Eur Food Res Technol,2010,230(6):989-999.

龙源期刊网 http://www.qikan.com.cn

[13] CRIF?魹 T, IVANA PUGLISI I, PETRONE G, et al. Expression analysis in response to low temperature stress in blood oranges: Implication of the flavonoid biosynthetic pathway[J].Gene,2011,476(1-2):1-9.

[14] HOLTON T A,CORNISH E C.Genetics and biochemistry of anthocyanin biosynthesis[J].The Plant Cell,1995,7(7):1071-1083.

[15] BOSS P K,DAVIES C,ROBINSON S P.Analysis of the expression of anthocyanin pathway genes in developing Vitis vinifera L. cv Shiraz grape berries and the implications for pathway regdation[J]. Plant Physiology,1996,111(4):1059-1066.

[16] GROTEWOLD E.The genetics and biochemistry of floral pigments[J].Annual Review of Plant Biology,2006,57:761-780.

[17] BOGS J,EBADI A,MCDAVID D,et al.Identification of the flavonoid hydroxylases from grapevine and their regulation during fruit development[J].Plant Physiology,2006,140(1):279-291.

[18] 王惠聪,胡桂兵.果实花色苷代谢及其调控[A].张上隆,陈昆松.果实品质形成与调控的分子生理[M].北京:中国农业出版社,2007.

[19] HAN Y P,VIOMLMANGKANG S,SORIA-GUERRA R E,et al.Ectopic expression of apple F3′H genes contributes to anthocyanin accumulation in the Arabidopsis tt7 mutant grown under N stress[J].Plant Physiology,2010,153(2):806-820.

[20] 张 东,滕元文.红梨资源及其果实着色机制研究进展[J].果树学报,2011,28(3):485-492.

[21] PETRONI K,TONELLI C.Recent advance on the regulation of anthocyanin synthesis in reproductive organs[J].Plant Science, 2011,181(3):219-229.

[22] KOBAYASHI S,ISHIMARU M,DING C K,et al.Comparison of UDP-gucose: Flavonoid 3-O-glucosyltransferase (UFGT) gene sequences between white grapes (Vitis vinifera) and their sports with red skin[J]. Plant Science,2001,160(3):543-550.

[23] TAKOS A M,JAFFE F W,JACOB S R,et al.Light-induced expression of a MYB gene regulates anthocyanin biosynthesis in red apples[J].Plant Physiology,2006,142(3):1216-1232.

龙源期刊网 http://www.qikan.com.cn

[24] SHAN X Y,ZHANG Y S,PENG W,et al.Molecular mechanism for jasmonate-induction of anthocyanin accumulation in Arabidopsis[J].Journal of Experimental Botany,2009,60(13):3849-3860.

[25] HONDA C,KOTODA N,WADA M,et al.Anthocyanin biosynthetic genes are coordinately expressed during red coloration in apple skin[J]. Plant Physiology and Biochemistry,2002, 40(11):955-962.

[26] KIM S H,LEE J R,HONG S T,et al.Molecular cloning and analysis of anthocyanin biosynthesis genes preferentially expressed in apple skin[J]. Plant Science,2003,165(2):403-413.

[27] TAKOS A M,UBI B E,ROBINSON S P,et al.Condensed tannin biosythesis genes are regulated separately from other flavonoid biosynthesis genes in apple fruit skin[J]. Plant Science,2006,170(3):487-499.

[28] KELLER M,HRAZDINA G.Interaction of nitrogen availability during verasion. Ⅱ.Effects on anthoeyanin and phenolic developmet during grape ripening[J].American Journal of Enology and Viticulture,1998,49(3):341-349.

[29] LAURA J,KAISU M,ANNA M P,et al.Expression of genes involved in anthoeyanin biosynthesis in relation to anthocyanin,proanthoeyanidin,and flavonol levels during bilberry fruit development[J].Plant Physiol,2002,130(2):729-739.

[30] ESPLEY R V,HELLENS R P, PUTTERILL J,et al. Red colouration in apple fruit is due to the activity of the MYB transcription factor,MdMYB10[J]. The Plant Journal,2007, 49(3):414-427.

[31] TSUDA T, YAMAGUCHI M, HONDA C,et al. Expression of anthocyanin biosynthesis genes in the skin of peach and nectarine fruit[J].Journal of the American Society for Horticultural Science,2004,129(6):857-862.

[32] KONDO S,HIRAOKA K,KOBAYASHI S,et al.Changes in the expression of anthocyanin biosynthetic genes during apple development[J].Journal of the American Society for Horticultural Science,2002,12(6):971-976.

[33] 张学英,张上隆,骆 军,等.果实花色素苷合成研究进展[J].果树学报,2004,21(5):456-460.

龙源期刊网 http://www.qikan.com.cn

[34] WANG Y,LI J,XIA R X.Expression of chalcone synthase and chalcone isomerase genes and accumulation of corresponding flavonoids during fruit maturation of Guoqing No.4 satsuma mandadarin (Citrus unshiu Marcow)[J].Scientia Horticulturae, 2010,125(3):110-116. [35] TELIAS A, WANG K L, STEVENSON D E,et al. Apple skin patterning is associated with differential expression of MYB10[J].BMC Plant Biology, 2011,11:93.

[36] ESPLEY R V,BRENDOLISE C,CHAGN D,et al. Multiple repeats of a promoter segment causes transcription factor autoregulation in red apples[J]. The Plant Cell,2009,21(1):168-183.

[37] BAN Y,HONDA C,HATSUYAMA Y,et al.Isolation and functional analysisis of a MYB transcription factor gene that is a key regulator for the development of red coloration in apple skin[J].Plant & Cell Physiology,2007,48(7):958-970.

[38] KOBAYASHI S,ISHIMARU M,HIRAOKA K,et al. Myb-related genes of the Kyoho grape (Vitis labruscana) regulate anthocyanin biosynthesis[J]. Planta,2002,215(6):924-933. [39] WALKER A R,LEE E,BOGS J,et al.White grapes arose through the mutation of two similar and adjacent regulatory genes[J]. Plant J,2007,49(5):772-785.

[40] FOURNIER-LEVEL A,LE CUNFF L,GOMEZ C,et al.Quantitative genetic bases of anthocyanin variation in grape (Vitis vinifera L. ssp. sativa) berry: A quantitative trait locus to quantitative trait nucleotide integrated study[J].Genetics, 2009,183(3):1127-1139. [41] AZUMA A,KOBYASHI S,MITANI N,et al.Genomic and genetic analysis of Myb-related genes that regulate anthocyanin biosynthesis in grape berry skin[J]. Theor App Genet, 2008, 117(6):1009-1019.

[42] DELUC L,BARRIEU F,MARCHIVE C,et al.Characterization of a grapevine R2R3-MYB transcription factor that regulates the phenylpropanoid pathway[J]. Plant Physiol,2006,140(2):499-511.

[43] DELUC L, BOGS J, WALKER A R,et al. The transcription factor VvMYB5b contributes to the regulation of anthocyanin and proanthocyanidin biosynthesis in developing grape berries[J]. Plant Physiol,2008,147(4):2041-2053.

[44] FENG S Q,WANG Y L,YANG S,et al.Anthocyanin biosynthesis in pears is regulated by a R2R3-MYB transcription factor PyMYB10[J].Planta,2010,232(1):245-255.

龙源期刊网 http://www.qikan.com.cn

[45] NIU S S,XU C J,ZHANG W S,et al. Coordinated regulation of anthocyanin biosynthesis in Chinese bayberry (Myrica rubra) fruit by a R2R3 MYB transcription factor[J].Planta, 2010,231(4):887-899.

[46] AHARONI A,RIC DE VOS CH,WEIN M,et al. The strawberry FaMYB1 transcription factor suppresses anthocyanin and flavonol accumulation in transgenic tobacco[J].The Plant Journal,2001,28(3):319-332.

[47] WANG K L,MICHELETTI D,PALMER J,et al. High temperature reduces apple fruit colour via modulation of the anthocyanin regulatory complex[J].Plant, Cell & Environment,2011,34(7):1176-1190.

[48] AMPOMAH-DWAMENA C,MCGHIE T,WIBISONO R,et al.The kiwifruit lycopene beta-cyclase plays a significant role in carotenoid accumulation in fruit[J]. J Exp Bot,2009,60(13):3765-3779.

[49] CAZZONELLI C I,POGSON B J.Source to sink: Regulation of carotenoid biosynthesis in plants[J]. Trends in Plant Science,2010,15(5):266-274.

[50] JU Z G,YUAN Y B,LIU C L,et al.Dihydroflavonol reductase activity and anthocyanin accumulation in ‘Delicious’,‘Golden Delicious’ and ‘Indo’ apples[J]. Scientia Horticulturae, 1997, 70(1):31-43.

[51] TAKOS A M ,ROBINSON S P ,WALKER A R.Transcriptional regulation of the flavonoid pathway in the skin of dark-grow ‘Cripps Red’ apples in response to sunlight[J]. Journal of Horticultural Science & Biotechnology,2006,81(4):735-744.

[52] 柳蕴芬,刘 莉,段艳欣,等.光对红肉桃果肉红色形成的影响[J].中国农学通报,2010,26(13):308-311.

[53] 杜纪红,叶正文,张学英,等.遮光对沪油018油桃果皮花色苷含量及果实着色的影响[J].果树学报,2008,25(6):928-931.

[54] ZHOU Y,GUO D,LI J,et al.Coordinated regulation of anthocyanin biosynthesis through photorespiration and temperature in peach(Prunus persica f. atropurpurea)[J].Tree Genet Geno,2013,9(1):265-278.

[55] 宋 哲,李天忠,徐贵轩,等.光质对红富士苹果果实着色的影响[J].生态学报,2009,29(5):2304-2311.

龙源期刊网 http://www.qikan.com.cn

[56] MORI K,GOTO-YAMAMOTO N,KITAYAMA M,et al.Loss of anthocyanins in red-wine grape under high temperature[J].J Exp Bot,2007,58(8):1935-1945.

[57] SHVARTS M,BOROCHOV A,WEISS D.Low temperature enhances petunia flower pigmentation and induces chalcone synthase gene expression[J]. Physiol Plant,1997,99(1):67-72.

[58] DELA G,OR E,OVADIA R,et al.Changes in anthocyanin concentration and composition in ‘Jaguar’ rose flowers due to transient high-temperature conditions[J]. Plant Science,2003, 164(3):333-340.

[59] STEYN W J,WAND S J E, HOLCROFT D M,et al.Red colour development and loss in pears[J]. Acta Horticult,2005,671:79-86.

[60] STEYN W J,WAND S J E,JACOBS G,et al.Evidence for a photoprotective function of low-temperature induced anthocyanin accumulation in apple and pear peel[J]. Physiol Plant,2009,136(4):461-462.

[61] MARAIS E,JACOBS G,HOLCROFT D M. Color response of ‘Cripps’ apples to postharvest irradiation is influenced by maturity and temperature[J]. Scientia Horticulturae,2001, 90(1-2):31-41.

[62] YAMANE T,SHIBAYAMA K.Effects of changes in the sensitivity to temperature on skin coloration in ‘Aki Queen’ grape berries[J]. J Japan Soc Hort Sci,2006,75(6):458-462.

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- sarr.cn 版权所有

违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务