您好,欢迎来到飒榕旅游知识分享网。
搜索
您的当前位置:首页沈蒲生第四版混凝土结构设计原理试题库及其参考答案

沈蒲生第四版混凝土结构设计原理试题库及其参考答案

来源:飒榕旅游知识分享网
答题参考答案 绪 论

1. 什么是混凝土结构?根据混凝土中添加材料的不同通常分哪些类型? 答:混凝土结构是以混凝土材料为主,并根据需要配置和添加钢筋、钢骨、钢管、预应力钢筋和各种纤维,形成的结构,有素混凝土结构、钢筋混凝土结构、钢骨混凝土结构、钢管混凝土结构、预应力混凝土结构及纤维混凝土结构。混凝土结构充分利用了混凝土抗压强度高和钢筋抗拉强度高的优点。

2.钢筋与混凝土共同工作的基础条件是什么? 答:混凝土和钢筋协同工作的条件是:

(1)钢筋与混凝土之间产生良好的粘结力,使两者结合为整体;

(2)钢筋与混凝土两者之间线膨胀系数几乎相同,两者之间不会发生相对的温度变形使粘结力遭到破坏;

(3)设置一定厚度混凝土保护层; (4)钢筋在混凝土中有可靠的锚固。 3.混凝土结构有哪些优缺点? 答:优点:(1)可模性好;(2)强价比合理;(3)耐火性能好;(4)耐久性能好;(5)适应灾害环境能力强,整体浇筑的钢筋混凝土结构整体性好,对抵抗地震、风载和爆炸冲击作用有良好性能;(6)可以就地取材。

钢筋混凝土结构的缺点:如自重大,不利于建造大跨结构;抗裂性差,过早开裂虽不影响承载力,但对要求防渗漏的结构,如容器、管道等,使用受到一定限制;现场浇筑施工工序多,需养护,工期长,并受施工环境和气候条件限制等。

4.简述混凝土结构设计方法的主要阶段。

答:混凝土结构设计方法大体可分为四个阶段:

(1)在20世纪初以前,钢筋混凝土本身计算理论尚未形成,设计沿用材料力学的容许应力方法。

(2)1938年左右已开始采用按破损阶段计算构件破坏承载力,50年代,出现了按极限状态设计方法,奠定了现代钢筋混凝土结构的设计计算理论。

(3)二战以后,设计计算理论已过渡到以概率论为基础的极限状态设计方法。

(4)20世纪90年代以后,开始采用或积极发展性能化设计方法和理论。

第2章 钢筋和混凝土的力学性能

1.软钢和硬钢的区别是什么?设计时分别采用什么值作为依据?

答:有物理屈服点的钢筋,称为软钢,如热轧钢筋和冷拉钢筋;无物理屈服点的钢筋,称为硬钢,如钢丝、钢绞线及热处理钢筋。

软钢有两个强度指标:一是屈服强度,这是钢筋混凝土构件设计时钢筋强度取值的依据,因为钢筋屈服后产生了较大的塑性变形,这将使构件变形和裂缝宽度大大增加以致无法使用,所以在设计中采用屈服强度fy作为钢筋的强度极限。另一个强度指标是钢筋极限强度fu,一般用作钢筋的实际破坏强度。

设计中硬钢极限抗拉强度不能作为钢筋强度取值的依据,一般取残余应变为

0.2%所对应的应力σ0.2作为无明显流幅钢筋的强度限值,通常称为条件屈服强度。对于高强钢丝,条件屈服强度相当于极限抗拉强度0.85倍。对于热处理钢筋,则为0.9倍。为了简化运算,《混凝土结构设计规范》统一取σ0.2=0.85σb,其中σb为无明显流幅钢筋的极限抗拉强度。

2.我国用于钢筋混凝土结构的钢筋有几种?我国热轧钢筋的强度分为几个等级?

答:目前我国用于钢筋混凝土结构和预应力混凝土结构的钢筋主要品种有钢筋、钢丝和钢绞线。根据轧制和加工工艺,钢筋可分为热轧钢筋、热处理钢筋和冷加工钢筋。

热轧钢筋分为热轧光面钢筋HPB235、热轧带肋钢筋HRB335、HRB400、余热处理钢筋RRB400(K 20MnSi,符号

,Ⅲ级)。热轧钢筋主要用于钢筋混凝

土结构中的钢筋和预应力混凝土结构中的非预应力普通钢筋。

3.在钢筋混凝土结构中,宜采用哪些钢筋?

答:钢筋混凝土结构及预应力混凝土结构的钢筋,应按下列规定采用:(1)普通钢筋宜采用HRB400级和HRB335级钢筋,也可采用HPB235级和RRB400级钢筋;(2)预应力钢筋宜采用预应力钢绞线、钢丝,也可采用热处理钢筋。

4.简述混凝土立方体抗压强度。

答:混凝土标准立方体的抗压强度,我国《普通混凝土力学性能试验方法标准》(GB/T50081-2002)规定:边长为150mm的标准立方体试件在标准条件(温度20±3℃,相对温度≥90%)下养护28天后,以标准试验方法(中心加载,加载速度为0.3~1.0N/mm2/s),试件上、下表面不涂润滑剂,连续加载直至试件破坏,测得混凝土抗压强度为混凝土标准立方体的抗压强度fck,单位N/mm2。

fckFA

fck——混凝土立方体试件抗压强度; F——试件破坏荷载; A——试件承压面积。

5.简述混凝土轴心抗压强度。

答:我国《普通混凝土力学性能试验方法标准》(GB/T50081-2002)采用150mm×150mm×300mm棱柱体作为混凝土轴心抗压强度试验的标准试件,混凝土试件轴心抗压强度

fcpFA

fcp——混凝土轴心抗压强度; F——试件破坏荷载; A——试件承压面积。

6.混凝土的强度等级是如何确定的。

答:混凝土强度等级应按立方体抗压强度标准值确定,混凝土立方体抗压强度标准值fcu,k,我国《混凝土结构设计规范》规定,立方体抗压强度标准值系指按上述标准方法测得的具有95%保证率的立方体抗压强度,根据立方体抗压强度标准值划分为C15、C20、 C25、C30、C35、C40、C45、C50、 C55、 C60、C65、 C70、 C75、 C80十四个等级。

7.简述混凝土三轴受压强度的概念。

答:三轴受压试验是侧向等压σ2=σ3=σr的三轴受压,即所谓常规三轴。试验时先通过液体静压力对混凝土圆柱体施加径向等压应力,然后对试件施加纵向压应力直到破坏。在这种受力状态下,试件由于侧压限制,其内部裂缝的产生和发展受到阻碍,因此当侧向压力增大时,破坏时的轴向抗压强度相应地增大。根据试验结果分析,三轴受力时混凝土纵向抗压强度为

fcc′= fc′+βσr

式中:fcc′——混凝土三轴受压时沿圆柱体纵轴的轴心抗压强度;

fc′ ——混凝土的单轴圆柱体轴心抗压强度; β ——系数,一般普通混凝土取4; σr ——侧向压应力。

8.简述混凝土在单轴短期加载下的应力~应变关系特点。

答:一般用标准棱柱体或圆柱体试件测定混凝土受压时的应力应变曲线。轴心受压混凝土典型的应力应变曲线如图,各个特征阶段的特点如下。

混凝土轴心受压时的应力应变曲线

1)应力σ≤0.3 fc sh

sh

当荷载较小时,即σ≤0.3 fc,曲线近似是直线(图2-3中OA段),A点相当于混凝土的弹性极限。此阶段中混凝土的变形主要取决于骨料和水泥石的弹性变形。

2)应力0.3 fc sh <σ≤0.8 fc sh

随着荷载的增加,当应力约为(0.3~0.8) fc sh,曲线明显偏离直线,应变增长比应力快,混凝土表现出越来越明显的弹塑性。

3)应力0.8 fc sh <σ≤1.0 fc sh

随着荷载进一步增加,当应力约为(0.8~1.0) fc sh,曲线进一步弯曲,应变增长速度进一步加快,表明混凝土的应力增量不大,而塑性变形却相当大。此阶段中混凝土内部微裂缝虽有所发展,但处于稳定状态,故b点称为临界应力点,相应的应力相当于混凝土的条件屈服强度。曲线上的峰值应力C点,极限强度fc sh,相应的峰值应变为ε0。 4)超过峰值应力后

超过C点以后,曲线进入下降段,试件的承载力随应变增长逐渐减小,这种

现象为应变软化。

9.什么叫混凝土徐变?混凝土徐变对结构有什么影响?

答:在不变的应力长期持续作用下,混凝土的变形随时间而缓慢增长的现象称为混凝土的徐变。

徐变对钢筋混凝土结构的影响既有有利方面又有不利方面。有利影响,在某种情况下,徐变有利于防止结构物裂缝形成;有利于结构或构件的内力重分布,减少应力集中现象及减少温度应力等。不利影响,由于混凝土的徐变使构件变形增大;在预应力混凝土构件中,徐变会导致预应力损失;徐变使受弯和偏心受压构件的受压区变形加大,故而使受弯构件挠度增加,使偏压构件的附加偏心距增大而导致构件承载力的降低。

10.钢筋与混凝土之间的粘结力是如何组成的?

答:试验表明,钢筋和混凝土之间的粘结力或者抗滑移力,由四部分组成: (1)化学胶结力:混凝土中的水泥凝胶体在钢筋表面产生的化学粘着力或吸附力,来源于浇注时水泥浆体向钢筋表面氧化层的渗透和养护过程中水泥晶体的生长和硬化,取决于水泥的性质和钢筋表面的粗糙程度。当钢筋受力后变形,发生局部滑移后,粘着力就丧失了。

(2)摩擦力:混凝土收缩后,将钢筋紧紧地握裹住而产生的力,当钢筋和混凝土产生相对滑移时,在钢筋和混凝土界面上将产生摩擦力。它取决于混凝土发生收缩、荷载和反力等对钢筋的径向压应力、钢筋和混凝土之间的粗糙程度等。钢筋和混凝土之间的挤压力越大、接触面越粗糙,则摩擦力越大。

(3)机械咬合力:钢筋表面凹凸不平与混凝土产生的机械咬合作用而产生的力,即混凝土对钢筋表面斜向压力的纵向分力,取决于混凝土的抗剪强度。变形钢筋的横肋会产生这种咬合力,它的咬合作用往往很大,是变形钢筋粘结力的主要来源,是锚固作用的主要成份。

(4)钢筋端部的锚固力:一般是用在钢筋端部弯钩、弯折,在锚固区焊接钢筋、短角钢等机械作用来维持锚固力。

各种粘结力中,化学胶结力较小;光面钢筋以摩擦力为主;变形钢筋以机械咬合力为主。

第3章 轴心受力构件承载力

1.轴心受压构件设计时,如果用高强度钢筋,其设计强度应如何取值? 答:纵向受力钢筋一般采用HRB400级、HRB335级和RRB400级,不宜采用高强度钢筋,因为与混凝土共同受压时,不能充分发挥其高强度的作用。混凝土破坏时的压应变0.002,此时相应的纵筋应力值бs’=Esεs’=200³103³0.002=400 N/mm2;对于HRB400级、HRB335级、HPB235级和RRB400级热扎钢筋已达到屈服强度,对于Ⅳ级和热处理钢筋在计算fy’值时只能取400 N/mm2。

2.轴心受压构件设计时,纵向受力钢筋和箍筋的作用分别是什么?

答:纵筋的作用:①与混凝土共同承受压力,提高构件与截面受压承载力;②提高构件的变形能力,改善受压破坏的脆性;③承受可能产生的偏心弯矩、混凝土收缩及温度变化引起的拉应力;④减少混凝土的徐变变形。横向箍筋的作用:①防止纵向钢筋受力后压屈和固定纵向钢筋位置;②改善构件破坏的脆性;③当采用密排箍筋时还能约束核芯内混凝土,提高其极限变形值。

3.简述轴心受压构件徐变引起应力重分布?(轴心受压柱在恒定荷载的作用下会产生什么现象?对截面中纵向钢筋和混凝土的应力将产生什么影响?)

答:当柱子在荷载长期持续作用下,使混凝土发生徐变而引起应力重分布。此时,如果构件在持续荷载过程中突然卸载,则混凝土只能恢复其全部压缩变形中的弹性变形部分,其徐变变形大部分不能恢复,而钢筋将能恢复其全部压缩变形,这就引起二者之间变形的差异。当构件中纵向钢筋的配筋率愈高,混凝土的徐变较大时,二者变形的差异也愈大。此时由于钢筋的弹性恢复,有可能使混凝土内的应力达到抗拉强度而立即断裂,产生脆性破坏。

4.对受压构件中纵向钢筋的直径和根数有何构造要求?对箍筋的直径和间距又有何构造要求?

答:纵向受力钢筋直径d不宜小于12mm,通常在12mm~32mm范围内选用。矩形截面的钢筋根数不应小于4根,圆形截面的钢筋根数不宜少于8根,不应小于6根。

纵向受力钢筋的净距不应小于50mm,最大净距不宜大于300mm。其对水平浇筑的预制柱,其纵向钢筋的最小净距为上部纵向受力钢筋水平方向不应小于30mm和1.5d(d为钢筋的最大直径),下部纵向钢筋水平方向不应小于25mm和d。上下接头处,对纵向钢筋和箍筋各有哪些构造要求?

5.进行螺旋筋柱正截面受压承载力计算时,有哪些限制条件?为什么要作出这些限制条件?

答:凡属下列条件的,不能按螺旋筋柱正截面受压承载力计算:

① 当l0/b>12时,此时因长细比较大,有可能因纵向弯曲引起螺旋箍筋不

起作用;

② 如果因混凝土保护层退出工作引起构件承载力降低的幅度大于因核芯混

凝土强度提高而使构件承载力增加的幅度,

③ 当间接钢筋换算截面面积Ass0小于纵筋全部截面面积的25%时,可以认为

间接钢筋配置得过少,套箍作用的效果不明显。 6.简述轴心受拉构件的受力过程和破坏过程?

答:第Ⅰ阶段——加载到开裂前 此阶段钢筋和混凝土共同工作,应力与应变大致成正比。在这一阶段末,混凝土拉应变达到极限拉应变,裂缝即将产生。

第Ⅱ阶段——混凝土开裂后至钢筋屈服前

裂缝产生后,混凝土不再承受拉力,所有的拉力均由钢筋来承担,这种应力间的调整称为截面上的应力重分布。第Ⅱ阶段是构件的正常使用阶段,此时构件受到的使用荷载大约为构件破坏时荷载的50%—70%,构件的裂缝宽度和变形的验算是以此阶段为依据的。

第Ⅲ阶段——钢筋屈服到构件破坏

当加载达到某点时,某一截面处的个别钢筋首先达到屈服,裂缝迅速发展,这时荷载稍稍增加,甚至不增加都会导致截面上的钢筋全部达到屈服(即荷载达到屈服荷载Ny时)。评判轴心受拉破坏的标准并不是构件拉断,而是钢筋屈服。正截面强度计算是以此阶段为依据的。

第4章 受弯构件正截面承载力

1.受弯构件适筋梁从开始加荷至破坏,经历了哪几个阶段?各阶段的主要特征是什么?各个阶段是哪种极限状态的计算依据?

答:适筋受弯构件正截面工作分为三个阶段。

第Ⅰ阶段荷载较小,梁基本上处于弹性工作阶段,随着荷载增加,弯矩加大,拉区边缘纤维混凝土表现出一定塑性性质。

第Ⅱ阶段弯矩超过开裂弯矩Mcrsh,梁出现裂缝,裂缝截面的混凝土退出工作,拉力由纵向受拉钢筋承担,随着弯矩的增加,受压区混凝土也表现出塑性性质,当梁处于第Ⅱ阶段末Ⅱa时,受拉钢筋开始屈服。

第Ⅲ阶段钢筋屈服后,梁的刚度迅速下降,挠度急剧增大,中和轴不断上升,受压区高度不断减小。受拉钢筋应力不再增加,经过一个塑性转动构成,压区混凝土被压碎,构件丧失承载力。

第Ⅰ阶段末的极限状态可作为其抗裂度计算的依据。

第Ⅱ阶段可作为构件在使用阶段裂缝宽度和挠度计算的依据。

第Ⅲ阶段末的极限状态可作为受弯构件正截面承载能力计算的依据。

2.钢筋混凝土受弯构件正截面有哪几种破坏形式?其破坏特征有何不同? 答:钢筋混凝土受弯构件正截面有适筋破坏、超筋破坏、少筋破坏。

梁配筋适中会发生适筋破坏。受拉钢筋首先屈服,钢筋应力保持不变而产生显著的塑性伸长,受压区边缘混凝土的应变达到极限压应变,混凝土压碎,构件破坏。梁破坏前,挠度较大,产生较大的塑性变形,有明显的破坏预兆,属于塑性破坏。

梁配筋过多会发生超筋破坏。破坏时压区混凝土被压坏,而拉区钢筋应力尚未达到屈服强度。破坏前梁的挠度及截面曲率曲线没有明显的转折点,拉区的裂缝宽度较小,破坏是突然的,没有明显预兆,属于脆性破坏,称为超筋破坏。

梁配筋过少会发生少筋破坏。拉区混凝土一旦开裂,受拉钢筋即达到屈服,并迅速经历整个流幅而进入强化阶段,梁即断裂,破坏很突然,无明显预兆,故属于脆性破坏。

2.什么叫最小配筋率?它是如何确定的?在计算中作用是什么?

答:最小配筋率是指,当梁的配筋率ρ很小,梁拉区开裂后,钢筋应力趋近于屈服强度,这时的配筋率称为最小配筋率ρmin。是根据Mu=Mcy时确定最小配筋率。

控制最小配筋率是防止构件发生少筋破坏,少筋破坏是脆性破坏,设计时应当避免。

3.单筋矩形受弯构件正截面承载力计算的基本假定是什么?

答:单筋矩形受弯构件正截面承载力计算的基本假定是(1)平截面假定;(2)混凝土应力—应变关系曲线的规定;(3)钢筋应力—应变关系的规定;(4)不考虑混凝土抗拉强度,钢筋拉伸应变值不超过0.01。以上规定的作用是确定钢筋、混凝土在承载力极限状态下的受力状态,并作适当简化,从而可以确定承载力的平衡方程或表达式。

4.确定等效矩形应力图的原则是什么?

《混凝土结构设计规范》规定,将实际应力图形换算为等效矩形应力图形时必须满足以下两个条件:(1) 受压区混凝土压应力合力C值的大小不变,即两个应力图形的面积应相等;(2) 合力C作用点位置不变,即两个应力图形的形心位置应相同。等效矩形应力图的采用使简化计算成为可能。 1.什么是双筋截面?在什么情况下才采用双筋截面? 答:在单筋截面受压区配置受力钢筋后便构成双筋截面。在受压区配置钢筋,可协助混凝土承受压力,提高截面的受弯承载力;由于受压钢筋的存在,增加了截面的延性,有利于改善构件的抗震性能;此外,受压钢筋能减少受压区混凝土

在荷载长期作用下产生的徐变,对减少构件在荷载长期作用下的挠度也是有利的。

双筋截面一般不经济,但下列情况可以采用:(1)弯矩较大,且截面高度受到限制,而采用单筋截面将引起超筋;(2)同一截面内受变号弯矩作用;(3)由于某种原因(延性、构造),受压区已配置As';(4)为了提高构件抗震性能或减少结构在长期荷载下的变形。

7.双筋矩形截面受弯构件正截面承载力计算的基本公式及适用条件是什么?为什么要规定适用条件?

答:双筋矩形截面受弯构件正截面承载力的两个基本公式:

1fcbxfyAsfyAs

MMx'''1fcbxh0fyAsh0as2''u

适用条件:(1)b,是为了保证受拉钢筋屈服,不发生超筋梁脆性破坏,且保证受压钢筋在构件破坏以前达到屈服强度;(2)为了使受压钢筋能达到抗压强度设计值,应满足x2as', 其含义为受压钢筋位置不低于受压应力矩形图形的重心。当不满足条件时,则表明受压钢筋的位置离中和轴太近,受压钢筋的应

变太小,以致其应力达不到抗压强度设计值。

8.双筋矩形截面受弯构件正截面承载力计算为什么要规定x2as'?当x<2a‘s应如何计算?

答:为了使受压钢筋能达到抗压强度设计值,应满足x2as', 其含义为受压钢筋位置不低于受压应力矩形图形的重心。当不满足条件时,则表明受压钢筋的位置离中和轴太近,受压钢筋的应变太小,以致其应力达不到抗压强度设计值。

此时对受压钢筋取矩

MufyAs(h0as)1fcbx(as''x2)

x<2as'时,公式中的右边第二项相对很小,可忽略不计,近似取x2as',即近似认为受压混凝土合力点与受压钢筋合力点重合,从而使受压区混凝土合力对受压钢筋合力点所产生的力矩等于零,因此

AsMfyh0a's

9.第二类T形截面受弯构件正截面承载力计算的基本公式及适用条件是什么?为什么要规定适用条件? 答:第二类型T形截面:(中和轴在腹板内) 1fc(b'fb)h'f1fcbxfyAs

Mu1fcbx(h0)1fc(b'fb)h'f(h02xhf2')

适用条件: b

规定适用条件是为了避免超筋破坏,而少筋破坏一般不会发生。

10.计算T形截面的最小配筋率时,为什么是用梁肋宽度b而不用受压翼缘宽度bf?

答:最小配筋率从理论上是由Mu=Mcy确定的,主要取决于受拉区的形状,所以计算T形截面的最小配筋率时,用梁肋宽度b而不用受压翼缘宽度bf 。

11.单筋截面、双筋截面、T形截面在受弯承载力方面,哪种更合理?,为什么?

答:T形截面优于单筋截面、单筋截面优于双筋截面。 12.写出桥梁工程中单筋截面受弯构件正截面承载力计算的基本公式及适用条件是什么?比较这些公式与建筑工程中相应公式的异同。

答:

fcdbxfsdAs 0Mdfcdbx(h0)

2x适用条件:

b ; Asminbh

《公路桥规》和《混凝土结构设计规范》中,受弯构件计算的基本假定和计算原理基本相同,但在公式表达形式上有差异,材料强度取值也不同。

第5章 受弯构件斜截面承载力

1.斜截面破坏形态有几类?分别采用什么方法加以控制? 答:(1)斜截面破坏形态有三类:斜压破坏,剪压破坏,斜拉破坏

(2)斜压破坏通过限制最小截面尺寸来控制;剪压破坏通过抗剪承载力计算来控制;斜拉破坏通过限制最小配箍率来控制; 2.影响斜截面受剪承载力的主要因素有哪些?

答:(1)剪跨比的影响,随着剪跨比的增加,抗剪承载力逐渐降低; (2)混凝土的抗压强度的影响,当剪跨比一定时,随着混凝土强度的提高,抗剪承载力增加;

(3)纵筋配筋率的影响,随着纵筋配筋率的增加,抗剪承载力略有增加; (4)箍筋的配箍率及箍筋强度的影响,随着箍筋的配箍率及箍筋强度的增加,抗剪承载力增加;

(5)斜裂缝的骨料咬合力和钢筋的销栓作用; (6)加载方式的影响;

(7)截面尺寸和形状的影响;

3.斜截面抗剪承载力为什么要规定上、下限?具体包含哪些条件?

答:斜截面抗剪承载力基本公式的建立是以剪压破坏为依据的,所以规定上、下限来避免斜压破坏和斜拉破坏。 4.钢筋在支座的锚固有何要求?

答:钢筋混凝土简支梁和连续梁简支端的下部纵向受力钢筋,其伸入梁支座范围内的锚固长度las 应符合下列规定:当剪力较小(V0.7ftbh0)时,

las5d;当剪力较大(V0.7ftbh0)时,las12d(带肋钢筋),las15d (光

圆钢筋),d为纵向受力钢筋的直径。如纵向受力钢筋伸入梁支座范围内的锚固

长度不符合上述要求时,应采取在钢筋上加焊锚固钢板或将钢筋端部焊接在梁端预埋件上等有效锚固措施。

5.什么是鸭筋和浮筋?浮筋为什么不能作为受剪钢筋? 答:单独设置的弯起钢筋,两端有一定的锚固长度的叫鸭筋,一端有锚固,另一端没有的叫浮筋。由于受剪钢筋是受拉的,所以不能设置浮筋。

第6章 受扭构件承载力

1.钢筋混凝土纯扭构件中适筋纯扭构件的破坏有什么特点?

答:当纵向钢筋和箍筋的数量配置适当时,在外扭矩作用下,混凝土开裂并退出工作,钢筋应力增加但没有达到屈服点。随着扭矩荷载不断增加,与主斜裂缝相交的纵筋和箍筋相继达到屈服强度,同时混凝土裂缝不断开展,最后形成构件三面受拉开裂,一面受压的空间扭曲破坏面,进而受压区混凝土被压碎而破坏,这种破坏与受弯构件适筋梁类似,属延性破坏,以适筋构件受力状态作为设计的依据。

2.钢筋混凝土纯扭构件中超筋纯扭构件的破坏有什么特点?计算中如何避免发生完全超筋破坏?

当纵向钢筋和箍筋配置过多或混凝土强度等级太低,会发生纵筋和箍筋都没有达到屈服强度,而混凝土先被压碎的现象,这种破坏与受弯构件超筋梁类似,没有明显的破坏预兆,钢筋未充分发挥作用,属脆性破坏,设计中应避免。为了避免此种破坏,《混凝土结构设计规范》对构件的截面尺寸作了限制,间接限定抗扭钢筋最大用量。

3.钢筋混凝土纯扭构件中少筋纯扭构件的破坏有什么特点?计算中如何避免发生少筋破坏?

当纵向钢筋和箍筋配置过少(或其中之一过少)时,混凝土开裂后,混凝土承担的拉力转移给钢筋,钢筋快速达到屈服强度并进入强化阶段,其破坏特征类似于受弯构件的少筋梁,破坏扭矩与开裂扭矩接近,破坏无预兆,属于脆性破坏。这种构件在设计中应避免。为了防止这种少筋破坏,《混凝土结构设计规范》规定,受扭箍筋和纵向受扭钢筋的配筋率不得小于各自的最小配筋率,并应符合受扭钢筋的构造要求。

4.简述素混凝土纯扭构件的破坏特征。

答:素混凝土纯扭构件在纯扭状态下,杆件截面中产生剪应力。对于素混凝土的纯扭构件,当主拉应力产生的拉应变超过混凝土极限拉应变时,构件即开裂。第一条裂缝出现在构件的长边(侧面)中点,与构件轴线成45°方向,斜裂缝出现后逐渐变宽以螺旋型发展到构件顶面和底面,形成三面受拉开裂,一面受压的空间斜曲面,直到受压侧面混凝土压坏,破坏面是一空间扭曲裂面,构件

破坏突然,为脆性破坏。

5.在抗扭计算中,配筋强度比的ζ含义是什么?起什么作用?有什么限制? 答:参数ζ反映了受扭构件中抗扭纵筋和箍筋在数量上和强度上的相对关系,称为纵筋和箍筋的配筋强度比,即纵筋和箍筋的体积比和强度比的乘积,

为箍筋的单肢截面面积,S为箍筋的间距,对应于一个箍筋体积

的纵筋体积为

筋截面面积,则ζ=

,其中

为截面内对称布置的全部纵

;试验表明,只有当ζ值在一定

范围内时,才可保证构件破坏时纵筋和箍筋的强度都得到充分利用,《规范》要

求ζ值符合0.6≤ζ≤1.7的条件,当ζ>1.7时,取ζ=1.7。

6.从受扭构件的受力合理性看,采用螺旋式配筋比较合理,但实际上为什么采用封闭式箍筋加纵筋的形式?

答:因为这种螺旋式钢筋施工复杂,也不能适应扭矩方向的改变,因此实际工程并不采用,而是采用沿构件截面周边均匀对称布置的纵向钢筋和沿构件长度方向均匀布置的封闭箍筋作为抗扭钢筋,抗扭钢筋的这种布置形式与构件正截面抗弯承载力及斜截面抗剪承载力要求布置的钢筋形式一致。

7.《混凝土结构设计规范》是如何考虑弯矩、剪力、和扭矩共同作用的?t的意义是什么?起什么作用?上下限是多少?

答:实际工程的受扭构件中,大都是弯矩、剪力、扭矩共同作用的。构件的受弯、受剪和受扭承载力是相互影响的,这种相互影响的性质称为复合受力的相关性。由于构件受扭、受弯、受剪承载力之间的相互影响问题过于复杂,采用统一的相关方程来计算比较困难。为了简化计算,《混凝土结构设计规范》对弯剪扭构件的计算采用了对混凝土提供的抗力部分考虑相关性,而对钢筋提供的抗力部分采用叠加的方法。t1.510.5VWtTbh0(0.5≤t≤1.0),t称为剪扭构件混

凝土受扭承载力降低系数,当t小于0.5时,取t等于0.5;当t大于1.0时,取

t等于1.0。

8.对受扭构件的截面尺寸有何要求?纵筋配筋率有哪些要求?

答:(1).截面尺寸要求

在受扭构件设计中,为了保证结构截面尺寸及混凝土材料强度不至于过小,为了避免超筋破坏,对构件的截面尺寸规定了限制条件。《混凝土结构设计规范》在试验的基础上,对hw/b≤6的钢筋混凝土构件,规定截面限制条件如下式 当hw/b≤4时

Vbh0Vbh0T0.8WtT0.8Wt0.25cfc (8-27)

当hw/b=6时

0.20cfc (8-28)

当4<hw/b<6时 按线性内插法确定。

计算时如不满足上面公式的要求,则需加大构件截面尺寸,或提高混凝土强度等级。

(2).最小配筋率

构在弯剪扭共同作用下,受扭纵筋的最小配筋率为

tl,minAstl,minbh0.6TftVbfy;纵筋最小配筋率应取抗弯及抗扭纵筋最小配筋率叠

加值。

第7章 偏心受力构件承载力

1.判别大、小偏心受压破坏的条件是什么?大、小偏心受压的破坏特征分别是什么?

答:(1)b,大偏心受压破坏;b,小偏心受压破坏;

(2)破坏特征:

大偏心受压破坏:破坏始自于远端钢筋的受拉屈服,然后近端混凝土受压破坏;

小偏心受压破坏:构件破坏时,混凝土受压破坏,但远端的钢筋并未屈服;

2.偏心受压短柱和长柱有何本质的区别?偏心距增大系数的物理意义是什么?

答:(1)偏心受压短柱和长柱有何本质的区别在于,长柱偏心受压后产生不可忽略的纵向弯曲,引起二阶弯矩。

(2)偏心距增大系数的物理意义是,考虑长柱偏心受压后产生的二阶弯矩对受压承载力的影响。

3.附加偏心距ea的物理意义是什么?如何取值?

答:附加偏心距ea的物理意义在于,考虑由于荷载偏差、施工误差等因素的影响,e0会增大或减小,另外,混凝土材料本身的不均匀性,也难保证几何中心和物理中心的重合。其值取20mm和偏心方向截面尺寸的1/30两者中的较大者。

4.偏心受拉构件划分大、小偏心的条件是什么?大、小偏心破坏的受力特点和破坏特征各有何不同?

答:(1)当N作用在纵向钢筋As合力点和As'合力点范围以外时,为大偏心受拉;当N作用在纵向钢筋As合力点和As'合力点范围之间时,为小偏心受拉; (2)大偏心受拉有混凝土受压区,钢筋先达到屈服强度,然后混凝土受压破坏;小偏心受拉破坏时,混凝土完全退出工作,由纵筋来承担所有的外力。 5.大偏心受拉构件为非对称配筋,如果计算中出现x2as'或出现负值,怎么处理?

答:取x2as',对混凝土受压区合力点(即受压钢筋合力点)取矩,

AsNe''fy(h0as)',As'minbh

第8章 钢筋混凝土构件的变形和裂缝

1.为什么说裂缝条数不会无限增加,最终将趋于稳定?

答:假设混凝土的应力σc由零增大到ft需要经过l长度的粘结应力的积累,即直到距开裂截面为l处,钢筋应力由σs1降低到σs2,混凝土的应力σc由零增大到ft,才有可能出现新的裂缝。显然,在距第一条裂缝两侧l的范围内,即在间距小于2l的两条裂缝之间,将不可能再出现新裂缝。

2.裂缝宽度与哪些因素有关,如不满足裂缝宽度限值,应如何处理?

答:与构件类型、保护层厚度、配筋率、钢筋直径和钢筋应力等因素有关。如不满足,可以采取减小钢筋应力(即增加钢筋用量)或减小钢筋直径等措施。

3.钢筋混凝土构件挠度计算与材料力学中挠度计算有何不同? 为何要引入“最小刚度原则”原则?

答:主要是指刚度的取值不同,材料力学中挠度计算采用弹性弯曲刚度,钢筋混凝土构件挠度计算采用由短期刚度修正的长期刚度。

“最小刚度原则”就是在简支梁全跨长范围内,可都按弯矩最大处的截面抗弯刚度,亦即按最小的截面抗弯刚度,用材料力学方法中不考虑剪切变形影响的公式来计算挠度。这样可以简化计算,而且误差不大,是允许的。

4.简述参数ψ的物理意义和影响因素?

答:系数ψ的物理意义就是反映裂缝间受拉混凝土对纵向受拉钢筋应变的影响程度。ψ的大小还与以有效受拉混凝土截面面积计算的有效纵向受拉钢筋配筋率ρte有关。

5.受弯构件短期刚度Bs与哪些因素有关,如不满足构件变形限值,应如何处理?

答:影响因素有:配筋率ρ、 截面形状、 混凝土强度等级、 截面有效高度h0。可以看出,如果挠度验算不符合要求,可增大截面高度,选择合适的配筋率ρ。

6.确定构件裂缝宽度限值和变形限值时分别考虑哪些因素?

答:确定构件裂缝宽度限值主要考虑(1)外观要求;(2)耐久性。

变形限值主要考虑(1) 保证建筑的使用功能要求 (2) 防止对非结构构件产生不良影响 (3) 保证人们的感觉在可接受的程度之内。

第9章 预应力混凝土构件

1.何为预应力?预应力混凝土结构的优缺点是什么?

答:①预应力:在结构构件使用前,通过先张法或后张法预先对构件混凝土施加的压应力。

②优点:提高构件的抗裂性、刚度及抗渗性,能够充分发挥材料的性能,节

约钢材。

③缺点:构件的施工、计算及构造较复杂,且延性较差。

2.为什么预应力混凝土构件所选用的材料都要求有较高的强度?

答:①要求混凝土强度高。因为先张法构件要求提高钢筋与混凝土之间的粘结应力,后张法构件要求具有足够的锚固端的局部受压承载力。

②要求钢筋强度高。因为张拉控制应力较高,同时考虑到为减小各构件的预应力损失。

3.什么是张拉控制应力?为何先张法的张拉控制应力略高于后张法? 答:①张拉控制应力:是指预应力钢筋在进行张拉时所控制达到的最大应力值。

②因为先张法是在浇灌混凝土之前在台座上张拉钢筋,预应力钢筋中建立的拉应力就是控制应力。放张预应力钢筋后构件产生回缩而引起预应力损失;而后张法是在混凝土构件上张拉钢筋,张拉时构件被压缩,张拉设备千斤顶所示的张拉控制应力为已扣除混凝土弹性压缩后的钢筋应力,所以先张法的张拉控制应力略高于后张法。

4.预应力损失包括哪些?如何减少各项预应力损失值?

答:预应力损失包括:①锚具变形和钢筋内缩引起的预应力损失。可通过选择变形小锚具或增加台座长度、少用垫板等措施减小该项预应力损失;

②预应力钢筋与孔道壁之间的摩擦引起的预应力损失。可通过两端张拉或超张拉减小该项预应力损失;

③预应力钢筋与承受拉力设备之间的温度差引起的预应力损失。可通过二次升温措施减小该项预应力损失;

④预应力钢筋松弛引起的预应力损失。可通过超张拉减小该项预应力损失; ⑤混凝土收缩、徐变引起的预应力损失。可通过减小水泥用量、降低水灰比、保证密实性、加强养互等措施减小该项预应力损失;

⑥螺旋式预应力钢筋构件,由于混凝土局部受挤压引起的预应力损失。为减小该损失可适当增大构件直径。

5.预应力轴心受拉构件,在施工阶段计算预加应力产生的混凝土法向应力时,为什么先张法构件用A0,而后张法用An?荷载作用阶段时都采用A0?先张法和后张法的A0、An如何计算?

答:因为在施工阶段,先张法构件放松预应力钢筋时,由于粘结应力的作用使混凝土、预应力钢筋和非预应力钢筋共同工作,变形协调,所以采用换算截面

A0,且A0AcEAsEAp;而后张法构件,构件中混凝土和非预应力钢筋sp共同工作良好,而与预应力钢筋较差,且预应力是通过锚具传递,所以采用净截面An,且AnA0EAp。

p6.如采用相同的控制应力con,相同的预应力损失值,当加载至混凝土预压应力pc为零时,先张法和后张法两种构件中预应力钢筋的应力p是否相同,

哪个大?

答:当pc为零时,由于先张法预应力钢筋的应力p为

p conl

后张法构件应力钢筋的应力p为

pconlEppc

比较发现,二者不同,在给定条件下,后张法中预应力钢筋中应力大一些。

7.预应力轴心受拉构件的裂缝宽度计算公式中,为什么钢筋的应力

skNkNp0ApAsNkN?

答:因为skp0ApAs为等效钢筋应力,根据钢筋合力点处混凝土预压应

力被抵消后的钢筋中的应力来确定。

8.后张法预应力混凝土构件,为什么要控制局部受压区的截面尺寸,并需在锚具处配置间接钢筋?在确定l时,为什么Ab和Al不扣除孔道面积?局部验算和预应力作用下的轴压验算有何不同?

答:①在后张法构件中,在端部控制局部尺寸和配置间接钢筋是为了防止局部混凝土受压开裂和破坏。

②在确定l时,Ab和Al不扣除孔道面积是因为二者为同心面积,所包含的孔道为同一孔道。

③两者的不同在于,局部验算是保证端部的受压承载能力,未受载面积对于局部受载面积有约束作用,从而可以间接的提高混凝土的抗压强度;而轴压验算是保证整个构件的强度和稳定。

9.对受弯构件的纵向受拉钢筋施加预应力后,是否能提高正截面受弯承载力、斜截面受剪承载力,为什么?

答:对正截面受弯承载力影响不明显。因为预应力可以提高抗裂度和刚度。破坏时,预应力已经抵消掉,与非预应力钢筋混凝土受弯构件破坏特性相似。首先达到屈服,然后受压区混凝土受压边缘应变到达极限应变而破坏。提高斜截面受剪承载力,因为预应力钢筋有约束斜裂缝开展的作用,增加了混凝土剪压区高度,从而提高了混凝土剪压区所承担的剪力。

10.预应力混凝土受弯构件正截面的界限相对受压区高度与钢筋混凝土受弯构件正截面的界限相对受压区高度是否相同?

答:通过比较可知,两者的正截面的界限相对受压区高度是不同的。预应力混凝土受弯构件的界限相对受压区高度与预应力钢筋强度、混凝土压应力为零时的应力有关。

11.预应力混凝土构件为什么要进行施工阶段的验算?预应力轴心受拉构件在施工阶段的正截面承载力验算、抗裂度验算与预应力混凝土受弯构件相比较,有何区别?

答:①预应力混凝土构件在施工阶段,由于施加预应力,构件必须满足其承载和抗裂的要求,所以施工阶段需要验算。

②两者的区别为受弯构件受压区混凝土压应力需要满足承载力、抗裂度要求之外,受拉区混凝土拉应力也需要满足相应要求。

12.预应力混凝土受弯构件的变形是如何进行计算的?与钢筋混凝土受弯构件的变形相比有何异同?

答:预应力混凝土受弯构件的挠度包括两部分:一部分为预加应力产生的反拱;一部分为荷载产生的挠度。荷载作用产生的挠度计算与钢筋混凝土受弯构件相似。

13.公路预应力桥梁的预应力损失如何估算?与建筑结构预应力梁的预应力损失有何异同?

答:公路预应力桥梁的预应力损失可按《公路桥规》进行估算。与建筑结构预应力梁的预应力损失比较,损失的种类相似,但有些损失计算方法有较大区别,如混凝土收缩、徐变引起的预应力损失。

14.预应力混凝土的张拉控制应力con为何不能取的太高?

答:如果张拉控制应力con取得太高,则可能引起构件的某些部位开裂或端部混凝土局部压坏、构件的延性降低或产生较大塑性变形。

计算题参考答案 第3章 轴心受力构件承载力

1. 某多层现浇框架结构的底层内柱,轴向力设计值N=2650kN,计算长度

l0H3.6m,混凝土强度等级为C30(fc=14.3N/mm),钢筋用HRB400级

2

(f'y360N/mm2),环境类别为一类。确定柱截面积尺寸及纵筋面积。 解:根据构造要求,先假定柱截面尺寸为400mm³400mm 由l0/b3600/4009,查表得0.99

根据轴心受压承载力公式确定As'

A's1'fy0.9AsA'(NfcA)1360(26501030.90.9914.3400400)1906mm

2'19064004001.2%min0.6%,对称配筋截面每一侧配筋率也满足

'0.2%的构造要求。 选 ,As'1964mm2

1964190619063.0%设计面积与计算面积误差<5%,满足要求。

2.某多层现浇框架厂房结构标准层中柱,轴向压力设计值N=2100kN,楼层高

2

H=5.60m,计算长度l0=1.25H,混凝土用C30(fc=14.3N/mm),钢筋用HRB335级(

fy300N/mm'2),环境类别为一类。确定该柱截面尺寸及纵筋面积。

[解] 根据构造要求,先假定柱截面尺寸为400mm³400mm

长细比

l0b1.25560040017.5,查表0.825

根据轴心受压承载力公式确定As'

As''1'fy(N0.9fcA)13000.90.825'(210000014.3400400)1801mm2

'AsA18014004001.1%min0.6%,对称配筋截面每一侧配筋率也满足0.2%的构造

要求。 选620,As'1884mm2

180118014.6%设计面积与计算面积误差1884<5%,满足要求。

3.某无侧移现浇框架结构底层中柱,计算长度l04.2m,截面尺寸为300mm³300mm,柱内配有416纵筋(fy300N/mm'2),混凝土强度等级为C30

(fc=14.3N/mm2),环境类别为一类。柱承载轴心压力设计值N=900kN,试核算该柱是否安全。 解: (1)求 则

l0b420030014.0,由表得0.92

(2)求Nu

)0.90.92(14.3300300300804)Nu0.9(fcAfyAs1265kN900kN(满足要求)

第4章 受弯构件正截面承载力

1.已知梁的截面尺寸为b³h=200mm³500mm,混凝土强度等级为C25,fc

2

=11.9N/mm,ft1.27N/mm2, 钢筋采用HRB335,fy300N/mm2截面弯矩设计

值M=165KN.m。环境类别为一类。求:受拉钢筋截面面积

解:采用单排布筋 h050035465mm 将已知数值代入公式 1fcbxfyAs 及

M1fcbx(h0x/2)得 1.011.9200x=300As

165106=1.011.9200x(465-x/2) 两式联立得:x=186mm As=1475.6mm2

验算 x=186mm<bh00.55465=255.8mm

As1475.6minbh0.2%200500200mm2 所以选用325 As=1473mm2

2.已知梁的截面尺寸为b³h=200mm³500mm,混凝土强度等级为C25,

ft1.27N/mm,fc11.9N/mm22,截面弯矩设计值M=125KN.m。环境类别为一

类。

求:(1)当采用钢筋HRB335级fy300N/mm2时,受拉钢筋截面面积;(2)当采用钢筋HRB400级fy360N/mm2时,受拉钢筋截面面积.

解:(1)由公式得

sMfcbh0212510621.011.9200465=0.243

112s1120.2430.283

s0.5(11-2s)0.5(1120.243)0.858

AsM/fysh01251063000.8584651044mm

2 选用钢筋418,As1017mm2

As1044minbh0.2%200500200mm2 (2)

As3001044/360870mm2。

3.已知梁的截面尺寸为b³h=250mm³450mm;受拉钢筋为4根直径为16mm

2

的HRB335钢筋,即Ⅱ级钢筋,fy300N/mm2,As=804mm;混凝土强度等级为

C40,ft1.71N/mm2,fc19.1N/mm2;承受的弯矩M=89KN.m。环境类别为一类。验算此梁截面是否安全。

222

解:fc=19.1N/mm,ft=1.7 N/mm,fy=300 N/mm。由表知,环境类别为一类的混凝土保护层最小厚度为25mm,故设a=35mm,h0=450-35=415mm As804minbh0.26%250450293mm2 则 Mfy0.00773001.019.10.121b0.55,满足适用条件。1fc

u1fcbh010.51.019.1250415220.12110.50.121

93.49KN.mM89KN.m,安全。4.已知梁的截面尺寸为b³h=200mm³500mm,混凝土强度等级为C40,

ft1.71N/mm,fc19.1N/mm222,钢筋采用HRB335,即Ⅱ级钢筋,

fy300N/mm,截面弯矩设计值M=330KN.m。环境类别为一类。受压区已配置

3φ20mm钢筋,As’=941mm2,求受拉钢筋As

解:M'fyAsh0a'30094144035114.3106KNm

''则M'MM1330106114.3106215.7106 KNm 已知后,就按单筋矩形截面求As1。设a=60mm、h0=500-60=440mm。 sM'21fcbh0215.710621.019.12004400.292

112s1120.2920.355b0.55,满足适用条件。s0.5112s0.51120.2920.823

 As1M'fysh0215.71063000.8234401986mm

2最后得 AsAs1As219869412927.0mm2 选用6φ25mm的钢筋,As=2945.9mm2

5.已知梁截面尺寸为200mm³400mm,混凝土等级C30,fc14.3N/mm2,钢筋采用HRB335,fy300N/mm2,环境类别为二类,受拉钢筋为3φ25的钢筋,As=1473mm2,受压钢筋为2φ6的钢筋,A’s = 402mm2;承受的弯矩设计值M=90 KN.m。试验算此截面是否安全。

解:fc=14.3N/mm2,fy=fy’=300N/mm2。

由表知,混凝土保护层最小厚度为35mm,故a3525247.5mm,

h0=400-47.5=352.5mm

由式1fcbxfyAsfyAs,得

xfyAsfy'As'30014733004021.014.3200'''

1fcb112.3mmbh0

0.55352.5194mm2a24080mm代入式

Mux'''1fcbxh0fyAsh0a2112.31.014.3200112.3352.5300402352.540

2132.8710N.mm9010N.mm,安全。66注意,在混凝土结构设计中,凡是正截面承载力复核题,都必须求出混凝土

受压区高度x值。

6.已知T形截面梁,截面尺寸如图所示,混凝土采用C30,fc14.3N/mm2,纵向钢筋采用HRB400级钢筋,fy360N/mm2,环境类别为一类。若承受的弯矩设计值为M=700kN²m,计算所需的受拉钢筋截面面积AS(预计两排钢筋,as=60mm)。

解:1、确定基本数据

由表查得fc14.3N/mm2;fy360N/mm2;a1=1.0;b0.518。

2、判别T形截面类

a1fcbfhf(h0hf2)1.014.3600120(6401202)

597.1710Nmm597.17kNmM700kNm

6故属于第二类T形截面。 3、计算受拉钢筋面积AS。

Ma1fc(bfb)hf(h0asa1fcbh20''hf2') 如图4

1202)7001061.014.3(600300)120(6401.014.33006402 = =0.228

112as1120.2280.262b0.518

ASa1fcbh0a1fc(bfb)h'ffy'

1.014.33000.2626401.014.3(600300)120360 3428mm2

选用4Ф282Ф25(AS=2463+982=3445mm2)

7. 某钢筋混凝土T形截面梁,截面尺寸和配筋情况(架立筋和箍筋的配置情况略)如图所示。混凝土强度等级为C30,fc14.3N/mm2,纵向钢筋为HRB400级钢筋,fy360N/mm2,as=70mm。若截面承受的弯矩设计值为M=550kN²m,试问此截面承载力是否足够? 解:1、确定基本数据

由表查得,fc14.3N/mm2;fy360N/mm2;a1=1.0;

b0.518;AS=2945mm。

h0has70070630mm2

2、判别T形截面类型

''a1fcbfhf1.014.3600100858000N如图5

fyAS36029451060200N858000N

故属于第二类T形截面。 3、计算受弯承载力Mu。

xfyASa1fc(bfb)hfa1fcb''

36029451.014.3(600250)1001.014.3250=156.56mm

xbh00.518630326.34mm,满足要求。

Mua1fcbx(h0x2)a1fc(bfb)hf(h0''hf2')

10021.014.3250156.56(630156.562)1.014.3(600250)100(630) 599.09106Nmm=599.00kN²m Mu>M=550kN²m

故该截面的承载力足够。

8.某一般环境中的中型公路桥梁中,梁的截面尺寸为b³h=200mm³500mm,混凝土强度等级为C25,ftd1.23N/mm2,fcd11.5N/mm2,钢筋采用HRB335,

fsd280N/mm2,截面弯矩设计值Md=165KN.m。求受拉钢筋截面面积。

解:(1)查取相关数据

r01.0,fcd11.5N/mm,ftd1.23N/mm2,fsd280N/mm2,b0.562

38

ftdfsd381.232800.1670.15,取min0.167%

采用绑扎骨架,按两层布置钢筋,假设as=65mm,h050065=435mm。 求受压区高度

相关数据代入式得

r0Mdfcdbx(h06x2),有

x2)

1651011.5200x(435解得 x221.1mm或648.9mm

取 x221.1mmbh00.56435243.6mm 求所需钢筋数量AS

有关数据代入公式 fcdbxfsdA

Asfcdfsdbx11.5280200221.1

=1816.2mm2

选配钢筋并满足最小配筋率 由表查得6ф20,AS实=1884mm2,考虑按两层布置,ф20钢筋的外径为22mm,梁侧混凝土保护层采用c25mm。 钢筋净间距为

Sn2002253(202)342mm

满足要求。 实际配筋率Asbh018842004352.2%min0.167%

第5章 受弯构件斜截面承载力

1.一钢筋混凝土矩形截面简支梁,截面尺寸250mm³500mm,混凝土强度等级为C20(ft=1.1N/mm2、fc=9.6 N/mm2),箍筋为热轧HPB235级钢筋(fyv=210 N/mm2),支座处截面的剪力最大值为180kN,求箍筋的数量。

解:

(1)验算截面尺寸

hwh0465mm,hwb4652501.864

2

2

属厚腹梁,混凝土强度等级为C20,fcuk=20N/mm<50 N/mm故βc=1

0.25cfcbh00.2519.6250465279000NVmax180000N

截面符合要求。

(2)验算是否需要计算配置箍筋

0.7ftbh00.71.125046589512.5NVmax(180000N),故需要进行

配箍计算。

(3)只配箍筋而不用弯起钢筋

V0.7ftbh01.25fyvnAsv1snAsv1sh0

0.741mm2/mm

若选用Φ8@120 ,实有

nAsv1snAsv1bs250.3120250.3250120ftfyv0.8380.741(可以)

配箍率sv0.335%

1.1210最小配箍率svmin0.240.240.126%sv(可以)

2.一钢筋混凝土矩形截面简支梁,截面尺寸250mm³500mm,混凝土强度等级为C20(ft=1.1N/mm2、fc=9.6 N/mm2),箍筋为热轧HRB335级钢筋(fyv=300 N/mm2),支座处截面的剪力最大值为180kN,求箍筋的数量。

3.钢筋混凝土矩形截面简支梁,如图所示,截面尺寸250mm³500mm,混凝

22

土强度等级为C20(ft=1.1N/mm、fc=9.6 N/mm),箍筋为热轧HPB235级钢筋(fyv=210 N/mm2),纵筋为225和222的HRB400级钢筋(fy=360 N/mm2)。

求:箍筋和弯起钢筋。

解:

(1)求剪力设计值

支座边缘处截面的剪力值最大 Vmax12ql01260(5.40.24)154.8KN

(2)验算截面尺寸

hwh0465mm,hwb4652501.864

属厚腹梁,混凝土强度等级为C20,fcuk=20N/mm2<50 N/mm2故βc=1

0.25cfcbh00.2519.6250465279000NVmax

截面符合要求。

(3)验算是否需要计算配置箍筋

0.7ftbh00.71.125046589512.5NVmax,故需要进行配箍计算。

(4)配置腹筋

根据已配的225+222纵向钢筋,可利用122以45°弯起,则弯筋承担的剪力:

Vsb0.8Asbfysins0.8380.136022

77406.1N混凝土和箍筋承担的剪力:

VcsVVsb15480077406.177393.9N 选用Φ8@200 ,实有

Vcs0.7ftbh01.25fyvnAsv1s200h0465 89512.51.25210250.3

150910.0N77393.9N(可以)(6)验算弯起点处的斜截面

V1548002.580.482.58126000150910.0N

故满足要求。

第7章 偏心受力构件承载力

1.已知一矩形截面偏心受压柱的截面尺寸bh300mm400mm,柱的计算长度l03.0m,asas'35mm ,混凝土强度等级为C35,fc = 16.7N/mm2,用HRB400级钢筋配筋,fy=fy=360N/mm,轴心压力设计值N = 400 KN,弯矩设计值M = 235.2KN²m,试按对称配筋进行截面设计。

解:⑴求ei、η、e

e0MN235.2104001036’2

588mm

ea20mm

2.5051.0

eie0ea58820608mm10.5fcAN0.516.730040040010311.0

l0h300040017.515,221.0l011eih1400h011140060836522

7.51.01.01.0241.01.024

eeih2as1.0246084002035787.7mm

(2)判别大小偏压

ei1.024608622.6mm0.3h00.3365109.5mm

属于大偏压 (3)求As和As'

因为对称配筋,故有N1fcbh0

所以N4001031fcbh021.016.73003650.219703650.192

AsAs'Ne1fcbh010.5fyh0as3''

2

40010787.71.016.7300365360(36535)2'(0.2190.50.219)

22037mmminbh0.002300400240mm符合要求, 各选配

,AsAs1964mm2,稍小于计算配筋,但差值在5%范围内,可认为

'满足要求。

2.已知某柱子截面尺寸bh200mm400mm,asas'35mm,混凝土用C25,fc =11.9N/mm,钢筋用HRB335级,fy=fy=300N/mm,钢筋采用

'2

2

,对称配

2

筋,AsAs226mm,柱子计算长度l0=3.6m,偏心距e0=100mm, 求构件截面的承

载力设计值N。

解:⑴求ei、η、e 已知e0=100mm

h304003013.3mm20mm

取ea20mm

eie0ea10020120mm

取11.0

l0h36004001915,221.0l011eih1400h011140012036522

91.01.01.1761.01.176

eeih2as1.176120400235306.12mm

(2)判别大小偏压

求界限偏心率

eobMbNb0.51fcbbh0(hbh0)0.5(fyAsfyAs)(h2as)''1fcbbh0fyAsfyAs1.011.92000.550365''0.51.011.92000.550365(4000.550365)0.5(300226300226)(400235)146.5mm又因为

ei1.176120141.1mm146.5mm,故为小偏压。

(3)求截面承载力设计值N

N1fcbxfyAs''1b1fyAs

0.83651.011.9200x300226300226 (A)

0.5500.83123x149160x又由Ne1fcbxh0xf'yA'sh0a's2

得:N306.121.011.9200x(3650.5x)300226(36535) 整理得:N2839x3.889x273117

联立(A)(B)两式,解得x205mm,代入(A)式中得: N491060N

(B)

根据求得的N值,重新求出1、值:

10.5fcAN0.511.92004004910600.969

相应值为1.717,与原来的1、值相差不大,故无需重求N值。

3.某混凝土偏心拉杆,b³h=250mm³400mm,as=as’=35mm,混凝土C20,fc=9.6N/mm2,钢筋HRB335,fy’=fy=300 N/mm2,已知截面上作用的轴向拉力N=550KN,弯矩M=60KN²m ,求:所需钢筋面积。 解:

1)判别大小偏心

e0MN60106355010109.1mmh2as20035165mm

轴向力作用在两侧钢筋之间,属小偏拉。 2)求所需钢筋面积

ee'h2h2e0ase0as'Nefyh0as'Ne'fyh0'as40024002109.13555.9mm109.135274.1mm3As'5501055.73003653555010274.130036535'3310.6mm2min'bh0.002250400200mm22AsAs'1522.8mm选用214 As308mm2

422 As1520mm2

As选用第8章 钢筋混凝土构件的变形和裂缝

1.承受均布荷载的矩形简支梁,计算跨度l0=6.0m,活荷载标准值qk=12kN/m,其准永久系数ψq=0.5;截面尺寸为b³h=200mm³400 mm,混凝土等级为C25,钢筋为HRB335级,4

16,环境类别为一类。试验算梁的跨中最大挠度是否符

合挠度限值l0/200。(附部分计算公式:) 解:

gk2500.20.420kN/m;qk12 kN/m

MMk1818(gkqk)l02218(2012)61821442 KN•m KN•m

q(gk0.5qk)l0(206)6117对于C25混凝土:Ec2.8104N/mm2;Es2.0105 N/mm2;ftk1.78 N/mm2

As804 mm;h0400258367 mm

2.0103.010542

EEsAsEcbh08042003670.0782

teAsAteM8040.52004001441060.0201

skkh0As0.87367804560.95 N/mm2

ψ1.1-0.65ftktesk21.10.651.780.0201560.9530.997

BsEsAsh01.15ψ0.26EMkk2001080436721.150.9970.260.078213121.191013N․mm

2

BMq(1)M14411714461.19106.5710 N․mm2

f5M48Bkl205144106000486.5710122821200l030mm

不满足要求。

2.某屋架下弦杆按轴心受拉构件设计,截面尺寸为200mm³200mm,混凝土强度等级为C30,钢筋为HRB400级,418,环境类别为一类。荷载效应标准组合的轴向拉力Nk=160kN。试对其进行裂缝宽度验算。 解:

2 2

轴心受拉构件cr2.7;As1017mm;ftk2.01 N/mm

teAsAte10172002000.0254

deq18mm

1600001017157.33 N/mm

2

skNkAsψ1.1-0.65ftktesk1.10.652.010.0254157.330.773

wmaxcrψskEs(1.9c0.08deqte)2.70.773157.332.0105(1.9250.08180.254)0.171mm〈wlim0.2 mm

满足要求。

3.简支矩形截面普通钢筋混凝土梁,截面尺寸b³h=200 mm³500mm,混凝土强度等级为C30,钢筋为HRB335级,416,按荷载效应标准组合计算的跨中弯矩Mk=95kN•m;环境类别为一类。试对其进行裂缝宽度验算,如不满足应采取什么措施。 解:

222

对于C30混凝土:Ec3.0104N/mm;Es2.0105 N/mm;ftk2.01 N/mm

As8042

mm;h0500258466mm

EEsAsEcbh02.0103.010548042004660.0575

teAsAteM8040.5200500951060.01608

skkh0As0.87466804291.4 N/mm2

ψ1.1-0.65ftktesk1.10.652.010.01608291.40.82

deq16mm;c25mm;cr2.1

skEs(1.9c0.08deq)2.10.82291.42.0105wmaxcrψte(1.9250.08160.01608)0.319mm〉wlim0.2mm

不满足要求。可以采取增大截面配筋的措施。

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- sarr.cn 版权所有

违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务