D¨orteHansen
InstituteofTheoreticalPhysics,Friedrich-Schiller-UniversityJena,Max-Wien-Platz1,D-07743JenaE-mail:D.Hansen@uni-jena.de
Abstract.Compactbinarysystemswithspinningcomponentsareconsidered.Finitesizeeffectsduetorotationaldeformationaretakenintoaccount.Thedynamicalevolutionandnexttoleadingordergravitationalwaveformsarecalculated,takingintoaccounttheorbitalmotionuptothefirstpost-Newtonianapproximation.
PACSnumbers:04.25.Nx,04.30.-w,04.30.Tv,95.85.Sz
Submittedto:Class.QuantumGrav.
Nexttoleadingordergravitationalwaveemission1.Introduction
2
Inspirallingcompactbinarysystemsareamongthemostpromisingsourcesfortheemissionofgravitationalwavesdetectablewithpresentday’sgravitationalwaveinterferometers.EarthboundgravitationalwavedetectorssuchasGeo600,VIRGO,TAMAandLIGOaremostsensitiveatwavelengthsofabout10-1000Hz.Thiscorrespondsroughlytothelast10minutesoftheinspiralbeforefinalplounge.InthatregimeNewtonianmechanicsisnotvalidandpost-Newtonianapproximationmustbeapplied.AnearlierstageoftheinspiralprocesswillbecoveredbytheyettobebuiltLISAinterferometer.ItisexpectedthatLISAwillbesensibletogravitationalwaveswithfrequenciesfromabout10−1to10−4Hz.However,inordertoactuallydetectgravitationalwaveshighlyaccuratetemplatesareessentially.Post-NewtoniancorrectionsmustbeincludedintotheEoM.Moreover,computingthegravitationalwaveformsbeyondtheleadingorderapproximationhighermassandcurrentmultipolemomentsmustbetakenintoaccount.
Inthepastthestudyofclosecompactbinarieswasoftenbasedontheassumptionthatthestarscanbetreatedaspointlike,non-spinningobjects.Uponthisassumptionitispossibletoderiveananalytic,socalledquasi-KepleriansolutionfortheconservativepartoftheEoMuptothethirdpost-Newtonianapproximation[1].Dissipativeeffectsduetotheemissionofgravitationalwavesfirstappearattheorder(v/c)5,whichcorrespondstothe2.5post-Newtonianorder.
Inthepresenceofatleastonespinningcomponentapost-Newtonianspin-orbitcouplingwhichfirstappearsat1.5post-Newtonianorderleadstocomplifications,whichhampertheinvestigationofspinningcompactbinarysystemsenormeously.Ingeneral,neitherorbitalangularmomentumnorthestellarspinareconserved.UptonowananalyticsolutiontotheconservativepartoftheEoMincludingspin-orbitcouplinghasbeenfoundinafewspecialcasesonly(seee.g.[2]).
Thusfarnotmuchprogresshasbeenmadeintheinvestigationofclosebinarysystemsoffinitesizeobjects.Withintheframeworkofpost-Newtoniananalysisitisoftenarguedthatfinitesizeeffectsareneglegibleduringmostoftheinspiralprocessandwillbecomeimportantnotuntilthelastfeworbitsbeforethefinalplunge[3].Growinginterestintheroleoffinitesizeeffectscomesmainlyfromthesideofnumericalrelativity.Infact,thoughfinitesizeeffectsduetostellarrotationandoscillationincompactbinarysystemsareverysmalltheycanwellbeintheorderofthefirstpost-Newtoniancorrectionstotheorbitaldynamics.Theseseculareffects,beingofNewtonianorigin,accumulateoveralargenumberoforbitsandthus,seenatlongerterms,leadtosignificantphaseshiftsinthegravitationalwaves.TheinfluenceofstellaroscillationsonthedynamicalevolutionandleadingordergravitationalwaveemissionhasbeeninvestigatedbyKokkotasandSch¨afer[4]andLaiandHo[5]fornonrotating,polytropicneutronstarsandbyLaietal[6]andHansen[7]forRiemann-Sbinaries.InalltheseapproachestheanalysiswasbasedonNewtoniantheory,the2.5pNradiationreactiontermsbeingtheonlypost-Newtoniantermsincluded.
Nexttoleadingordergravitationalwaveemission3
Thispaperisdevotedtotheinvestigationoftheinfluenceoffinitesizeeffectsonthedynamicsandgravitationalwaveemissionbeyondtheleadingorderapproximation.Basically,perturbationsofthepointparticledynamicsariseduetostellaroscillations(mainlytidallydriven)androtationaldeformation.Hereweshallrestrictourselvestosystemsweretheapsidalmotionduetorotationaldeformationismuchlargerthantheonecausedbystellaroscillations.
Tobeginwith,letusnotethatthereis,strictlyspeaking,nospinningpointparticle.Aspinningobjectautomaticallygainsafinitesize(seee.g.[8]).Ithatbeenlongknownthatthecouplingofthenonvanishingstellarquadrupolemomenttotheorbitalmotion,whichisapurelyNewtonianeffect,leadstoanapsidalmotion.Foracoupleofclosemainsequencestarbinariesthisapsidalmotionhasbeenobservedtogreataccuracy(seee.g.ClaretandWillems[9]).Inthesesystemsapsidalmotionduetofinitesizeeffectsisconsiderablylargerthantherelativisticperiastronadvance.Anothergroupofbinarysystems,wherefinitesizeeffectsplayanimportantrole,arebinarypulsarssuchasPSRB1259-63,whichhasbeenfoundbyJohnstonetal.in1992[10].WhilethecompactcomponentofPSR1259-63isa47mspulsar,it’scompanionisaBestar,whosespin-inducedquadrupoledeformationleadstoanapsidalmotion.
However,itisclosecompactbinarysystemswhicharemostrelevantforgravitationalwavedetectors.Thisincludesnotonlyblackhole-blackhole,blackhole-neutronstarorneutronstar-neutronstarbinariesbut,ifLISAisreadytowork,alsoclosewhitedwarfbinaries.Ofcoursetherotationaldeformationofcompactstarsismuchsmallerthanitwouldbepossibleinnon-compactstars.However,atleastforneutronstar(NS)andwhitedwarf(WD)binariesoneshouldnotapriorineglectfinitesizeeffectsduetoquadrupoledeformation.Inparticularitiswellpossiblethattheperturbationsintroducedbythecouplingofthestellarquadrupolemomenttotheorbitalmotionisofthesameorderofmagnitudeasthefirstpost-Newtoniancorrections.Thisisassumedthroughoutthepaper.Theanalysisappliestocompactbinarysystems,whosespinningcomponentisaWDorafastrotatingNS.Inordertosimplifycalculationsitisassumedthatthespinisperpendiculartotheorbitalplane.Insection2theorbitalevolutionofaspinningcompactbinaryisstudieduptofirstpostNewtonianorderinthepointparticledynamics.TheEoMaswellasaparametric,quasi-Kepleriansolutionarederived.Insection3thenexttoleadingordergravitationalwaveformsarecalculatedexplicitly.Thelongtimeevolutionandtheinfluenceofthequadrupolecouplingtotheinspiralprocessisdiscussedinsection4.
2.The1pNorbitalmotionincludingspineffectsduetorotationaldeformation
In1985DamourandDeruelle[11]succeededinderivingananalyticsolutiontothe1pNEoMofapoint-particlebinary,whichexhibitsaremarkablesimilaritytothewellknownKeplerparametrizationinNewtoniantheoryandishencecalledquasi-Kepleriansolution.UsingthesamestrategyWexconsideredabinaryconsistingofapulsarand
Nexttoleadingordergravitationalwaveemission4
aspinningmainsequencecomponentatNewtonianorder[12].TreatingtheNewtoniancouplingbetweentherotationallydeformedstarandtheorbitaldynamicsasasmallperturbationhederivedaquasi-Kepleriansolutionuptofirstorderinthedeformationparameterq,whichwillbeintroducedinthefollowing.Inthisletterweshallextendhisinvestigations,takingintoaccounttheorbitaldynamicsuptofirstpost-Newtonianapproximation.Inordertoderiveananalyticsolutionweshallfurtherassumethatthemodificationsinducedbyfinitesizeeffectsareofthesameorderasthe1pNorbitalcorrections.Thatis,werestrictouranalysistocompactbinarysystemsconsistingofafastspinningneutronstarorwhitedwarfandanon-spinningcompactobject.Ofcourse,allresultscanbeappliedtoameansequencestar-compactstarbinaryintheNewtonianlimit.
Therotationaldeformationofaspinningstarofmassmcanbedescribedbysomeparameterq,whichisdefinedas[13]
mq:=
1
23
kRΩˆ2,Ω
ˆ=ΩGm/R3
.(2)
HereRdenotesthepolarradiusandΩtheangularvelocityoftherotatingstar.The
constantofapsidalmotionkstronglydependsonthedensitydistribution.Itvanishesifallmassisconcentratedinthecenterandtakesit’smaximalvaluekmax=0.75forahomogeneoussphere.NeutronstarsandlowmasswhitedwarfscanbeapproximatelymodelledbyanpolytropicEoSwithindexn=0.5...1andn≈1.5forneutronstarsandwhitedwarfs,respectively.Infact,forpolytropesthevalueofkisgivenby(seee.g.[15])
k=
1s·r)2
2r3
3(ˆNexttoleadingordergravitationalwaveemission5
totheangularmomentumofthesystem,i.e.perpendiculartotheorbitalplane.InthesecasesEq.(3)takesarathersimpleform,
HMµq
q=−
G7−ν
2r+
E0
r22pN.
(5)
0c
≡EN+ComparingEpNwiththecouplingenergywefindthattheq-termoffersacontribution
comparabletothe1pNorbitalperturbationif
q
c2
≡rS.Ifq/r0ismuchlargerthantheSchwarzschildradiusrStheNewtonianquadrupolecontributionwillclearlydominate,whileforq/r0Keplerianorbitcomesfromthepost-Newtonian≪GcorrectionM/c2theleadingperturbationtotheterms.Thevalueofqcruciallydependsonthedensitydistribution(viak)andontheangularvelorcityoftherotatingstar.Thelateroneisboundedbythemass-sheddinglimit.ForaNewtonianstarwithapolytropicEoSonecanshowthatthemass-sheddinglimitisgivenby[17]
Ωmax=
2
GmkR2Ωˆ2=2
3
max
Nexttoleadingordergravitationalwaveemission6
risetoperturbationswhichareconsiderablylargerthanthe1.5pNorder.Forspinningwhitedwarfsthingscanbedifferent.InthatcasethefinitesizecontributionduetorotationaldeformationcanbeequalorevenlargerthanthepNcontribution.
Thesepreliminaryconsiderationsshowedthattheremightexistclosecompactbinarysystemsforwhichthefinitesizeeffectsintroducedbyrotationaldeformationareinthesamerangeasthefirstpost-Newtoniancorrection.Employingthisassumptionweshallnowderivethequasi-Keplerianparametrizationatthefirstpost-Newtonianorderincludingleadingorderquadrupolecoupling(furtherondenotedasq-coupling).Introducingthereducedenergyandangularmomentum,E=:E/µandJ=:J/µ,respectively,the1pNconservedenergyincludingNewtonianq-couplingreads
qGM3v222
1+(3+ν)v+νr˙+E=
rc22r
r2
1−3ν1−2B
r2
+
c2rD
(4−2ν),
(8)
r˙2=A+
2
(3ν−1)
E,
c2
C=−J2+
1
(10)
c2
areconstants.InthestandardapproachofDamourandDeruelleitiscrucialthatDisoforderO(c−2)andthusasmallquantity.NowinourcaseDdependsnotonlyoncbutitisalsolinearinthedeformationparameterq.IfthespinningcomponentisgovernedbyasoftEoSthecorrectiontotheorbitalmotioninducedbytheq-couplingismuchlargerthanthe1pNcorrections.Thisisusualthecaseformain-sequencestarbinaries(seee.g.ClaretandWillems[9]).Forcompactstarsinclosebinarysystems,ontheotherhand,thecontributionoftheq-couplingcanbeofthesameorderasthe1pNorbitalcorrection.UnderthisassumptionwecanapplyDamourandDeruellesstrategystraightforwardly,derivingaquasi-Kepleriansolutionuptolinearorderofq.Thisyields
r=ar(1−ercosu),u−etsinu=n(t−t0),
utanϕ=2(κ+1)arctan
1−eϕ
(11)
Nexttoleadingordergravitationalwaveemission
wheren,ar,er,etandeϕdependonthecoefficientsdefinedaboveas
ADB
,e=e1−+ar=−ϕt2J2c2
BD
,et=C+
2BJ2B2
−A3/B2,andκisgivenbyκ=
3G2M2
c2
+
q
7
n2=−
2E8E3
−
1
4c2E2c2
(ν−7),
ν
eϕ=er1−Eδ+
,
Nexttoleadingordergravitationalwaveemission8
Note,thatH1pN=E=µE,sinceH1pNisconservedatthefirstpost-Newtonianorder.Ashasbeenalreadymentionedbefore,thequadrupoleinteractiontermisdefactoaNewtoniancorrectiontothepointparticleHamiltonian.Thisisimportanttokeepinmindwhen,forinstance,calculatingtheorbitalevolutionandgravitationalwaveemissionofbinarypulsarswithamainsequencestarcompanion,suchasPSRB1259-63[12].FortheHamiltonianequationsthatgovernthetimeevolutionofthebinarysystemonefinds
3ν−1GMµ2pr
−r˙=
µ2c2r2
2
p1ϕ2
p+1+(3+ν),r
µr22r
p2p23q3ν−1ϕϕ2
1+p+p˙r=r
r2c2r3
GM
,−
r3r2
p˙ϕ=0.Nowletusincludeleadingorderdissipativeeffectsintothatscheme.Ingeneral,the
leadingorderenergydissipationofamatterdistributionisgovernedbythetime-dependentradiationreactionHamiltonian[18]
Hreac(t)=
2G
ρ+
1
effect.Atthelevelofthesecondpost-Newtonianapproximationtherelativisticspin-spincouplingleadstoaprecessionoftheorbitalplane.Both,incorporatingspin-orbitaswellasinvestigatingthespin-spincoupling,isbeyondthisletter,whichisdevotedtothestudyoftheinfluenceofcertainfinitesizeeffectsonthedynamicalevolutionandgravitationalwaveemissionofthebinarysystem.
Inthecenterofmasssystemthe1pNHamiltonian,includingq-coupling,reads
2
pGMµ1142ϕ
−q+p+2pH1pN=rrr22r38µ3r4
p2GMϕ
−.(17)+(3+ν)
µ2r2
5c
I(t)5ij
(3)
pipj
r3
.(20)
Nexttoleadingordergravitationalwaveemission
(3)
9
ItiscrucialtoconsiderIij(t)asafunctionoftime,andnotasafunctionofgeneralizedcoordinatesandmomenta,whencalculatingtheradiationreactionpartoftheEoMaccordingto
∂Hreac
.(p˙i)reac=−
∂piOnlyafterwardsIijcanbeexpressedasafunctionofpr,pϕ,randϕ.Explicitly,thecalculationyields[4],[7]
8GM3ν
(p˙r)rad=,
r4c5νr
2GM3ν282
−p(p˙ϕ)rad=−r,νr3c5r2
p28ϕ2
2p+6(r˙)rad=−r
νr2c5G2prpϕ3
(3)
q˜.
cc4
Applyingthis,theHamiltonianequationsgoverningtheevolutionofthebinarysystemincludingleadingorderradiationbackreactionread
3+2νν3ν−1˙=p−,(22)r˜˜r1+22r˜15r˜
p˜28νp˜ϕϕ2
p˜r+−,(23)ϕ˙=
2r˜r˜42
p˜2p˜p˜23˜q3+2νϕϕϕ˙r=p˜1+−(3+ν)
r˜22r˜22
8ν1
,(24)+
r˜3r˜4r˜8ν2˙ϕ=−p˜(25)−p˜2r.32r˜r˜
Neitherthetotalenergynortheorbitalangularmomentumisconserved,asindicatedbyEq.(25).
ThetimeevolutionofbinarysystemsdescribedbyEqs.(22)-(25)isfullydeterminedby3parameters:thesemi-majoraxisar,theorbitaleccentricityerandthedeformationparameterq,whichhavetobeknownfort=0.Startingthenumericalintegrationintheperiastron,i.e.atϕ(0)=0,theinitialvaluesforrandprfollowimmediatelyas
r(0)=r0=ar(0)(1−er(0)),
pr(0)=0.
Todeterminetheinitialvalueforpϕweusethat,atthebeginningoftheintegration,thetotalenergyofthesystemisgivenbytheconservativepartoftheHamiltonian,or,
p˜ϕ,r=
GM
Nexttoleadingordergravitationalwaveemission
usingthereducedenergy,E(0)=E=H1pN/µ.ItfollowsthenfromEq.(17)that¶
q2orb22
(1−3ν)r(E)pϕ(0)2=2r0E1pN+2GMr01+0Nc2
orb22
+4(1−ν)GMr0EN+(6−ν)GM,
orb
whereENistheNewtonianenergyoftheorbit.
10
3.Higherordergravitationalwaveemission
IntheprevioussectionswehaveinvestigatedthedynamicalevolutionofaspinningcompactbinarysystematthefirstpostNewtonianapproximation.Nowweshallturnourattentiontothegravitationalwavesemittedbythesystem.Farawayfromthesourcethespacetimecanbeassumedtobeasymptoticallyflat,suchthatthemetricislocallyMinkowskian.Infact,inasymptoticallyflatspace-timesthegravitationalwavesemittedbyanisolatedbinarysystemsareexpectedtoobeyamultipoleexpansionoftheform(seee.g.[19])
l−2
4GT
hT=ij
c
l−1
8l
c
Dc4
∞
l=2m=−l
l
c
l−1
1
B2,lm
S(l)lm(t−D/c)Tij(Θ,Φ),
(27)
E2,lmB2,lm
whereTijandTijaretheso-calledpure-spintensor-sphericalharmonicsofelectricandmagnetictype.Theseharmonicsareorthonormalontheunitsphere.Infact,
ˆandΘ,ˆtheycanbedecomposedintoatermproportionaltointroducingunitvectorsΦ
ˆ⊗Θˆ−Φˆ⊗Φ)ˆand(Θˆ⊗Φˆ+Φˆ⊗Θ),ˆrespectively.Thatway,iftheTE/B2,lmare(Θ
¶Notethatpϕ→µpϕandpr→µpr.
Nexttoleadingordergravitationalwaveemission11
known,oneobtainsthepolarizationstatesh+andh×oftheradiationfieldfromEq.(27)withoutanyfurthercalculations.Thepure-spintensor-sphericalharmonicsneededherearegivenbyEqs.(A.7)-(A.16)intheappendix+.
Insection2thepointparticlecontributionwastakenintoaccountuptofirstpost-Newtonianapproximation,andthequadrupolecouplingterm,thoughpresentalreadyatNewtonianorder,wasassumedtobeofthesameorderasthe1pNcorrectionstothepointparticledynamics.Thatmeans,wehavetogobeyondtheleadingordergravitationalwaveformula.Consideringthedynamicsupto1pNrequirestheapplicationofthemultipoleexpansion(27)uptol=4forthemassmultipolemomentsanduptol=3forthecurrentmultipolemoments.Explicitly,neglectingallhigherorderterms,Eq.(27)isreducedto∗
32GB2,2mE2,3m
S(2)2mT+I(3)3mT++h+,×=,×,×
cm=−3
m=−2
+1
c
h+,×+
(1)
1
Iijk
221c√
=−µ
2s
−12(r·v)xivj+11rvivj+Iij,
42
(1−3ν)
v2
7c2
GM
(30)
1−4νεabixjxavb,
Jijk=µ(1−3ν)εabkxixjxavb,
(33)(34)
wherebracketsdenotetheSTF-partofthecorrespondenttensor(seeappendixA).
Atthispointitisneccessarytoconsideramomentthecontributionofthestellarmass-quadrupolemoment.Sinceonecomponentofthebinaryisspinningandthus
s
automaticallygainsafinitesizetherecouldbe,inprinciple,acontributionofIijtothegravitationalwaveemissionofthesystem.Thiscontributionis,however,verysmall,unlesstheenergystoredintheinternalstellardegreesoffreedom,e.g.oscillationsof
¨sisthestar,iscomparabletotheorbitalenergy.FromnowonweshallassumethatIij
+
ˆ⊗Θˆ−Φˆ⊗Φ)-partˆˆ⊗Φ+ˆΦˆ⊗Θ)-part.ˆInthisrepresentation,h+isthe(ΘofEq.(27),whileh×isthe(Θ
∗FromnowonweomitthesupscriptTTfornotationalconvenience.
Nexttoleadingordergravitationalwaveemission12
eithertrivialorcanbeneglectedcomparedtoallothertermspresentinthecalculation.UsingtheNewtonianequationofmotionforapoint-particlebinary♯
v
˙=−GMr·v)2r3
r
1+
3q
r3c2
r
GM(2
2
M
14
(1−3ν)
vG21
GM
7
32
1+
3q
21
7c
2
(1−3ν)(r·v)2
rc2
,
I(3)
ijk=−µ
√
r5
(r·v)xixjxk−21
GM
rvGM
ivjxkxl+42
(r·v)2
r3
xixjxkxl
r3
7
GM
r2
−15
1−4νGM
r3
(1−3ν)−4εxr·v
abkxivjavb+3
23
5−2
v−
GM
2r2
+
1
r2(ν−10)
+
9
27r
((37−20ν)r2ϕ˙−(15+32ν)r˙2)
,I(2)21=0,
I(2)22=
5
µe−2iϕ2
r
˙2−r2ϕ˙2−GM
2r2
−2irr˙ϕ˙
♯Rememberthatqistreatedformallyasa1pNquantity.
v2
(35)
(40)(41)(42)
Nexttoleadingordergravitationalwaveemission
+1
r2
+GM
7
(1−3ν)(r˙4−r4ϕ˙4)−irr˙ϕ˙
10
r+18
π
2I(3)33
=2ν(m1−m2)
r
−v2
+irϕ˙v−
7r
,21
e−3iϕ2
r˙2−2GM−6r˙2+2r2ϕ˙2r
,I(4)40
=2πGr2
−
M√
2
+
GM
63rr
,
I(4)44=
2
π
r2
+GM
r
−24r˙2+24r2ϕ˙2
S(2)20=S(2)22=0,
,S(2)21=
8
2ππ3
7
(1−3ν)GMµe−2iϕϕ˙(r˙−4irϕ˙).
Hereweusedthat
√
13
(44)
(45)
(48)
(49)(50)
()
Nexttoleadingordergravitationalwaveemission(28)onefinds,atleadingorder,Dc4
r
14
1+
3q
3q1+
G2r2
Notethat,inordertoemphasizethecharacteroftheq-coupling,theq-dependenttermshavebeenincludedintotheleadingordercomponentoftheradiationfield.Defining∆m≡m1−m2thefirstcorrectiontermsread
GMDc
2µsinΘ
M2
GM6
GM
2r˙cos3(Φ−ϕ)r˙2−3r2ϕ˙2−2
4
,(56)−6r˙2+2r2ϕ˙2
r
∆mGMDc5
22
rϕ˙+−6r˙2+2r2ϕ˙2
rr
GM
+r˙sin3(Φ−ϕ)r˙2−3r2ϕ˙2−2
1+cos2Θ
15+32ν
21(5+27ν)
7
9
h×
(0)
r
GM
=µcosΘ4rr˙ϕ˙cos2(Φ−ϕ)−2sin2(Φ−ϕ)r˙2−r2ϕ˙2−
.
G
(2)h+
=
+
rrr˙ϕ˙
GM
+
r2
r2ϕ˙2
2
3
G2M2
µ(ν−10)
(1−3ν)v4+
GM
+
561−3ν
22
GM
µ(7cos4Θ−8cos2Θ+1)7
GM
2
2
r
(18r˙2+13r2ϕ˙2)+6v4
r
(18r˙2−3r2ϕ˙2)−7
r
Nexttoleadingordergravitationalwaveemission
+1−3ν
r2
+6r˙4−36r2r˙2ϕ˙2
r
−24r˙2
15
GM
+6r4ϕ˙4+
1−3ν22
−+24rϕ˙
(2)
G
h×=µcosΘ
rr˙ϕ˙
3
(5+27ν)r2
+
GM
r˙2−
11+156ν
GM
7
(1−3ν)(r˙4−r4ϕ˙4)
7
1
+(1−3ν)µcosΘ−
GMϕ˙{r˙cos2(Φ−ϕ)}+4rϕ˙sin2(Φ−ϕ)
−−24r˙2+24r2ϕ˙2
r
22
GM
(51r2ϕ˙2−18r˙2)+6r˙4+6r4ϕ˙4−36r2r˙2ϕ˙2+sin4(Φ−ϕ)7
r
2
7cosΘ−5−
r
G2M2
+sin2(Φ−ϕ)−7.(59)(18r˙2−3r2ϕ˙2)+6r4ϕ˙4−6r˙4
r
Thepolarizationstatesofthegravitationalradiationfield,expressedintermsofgeneralizedcoordinatesandmomenta,canbefoundinappendixB.
6sin2Θ
4.Discussion
IthasbeenlongknownthatfinizesizeeffectsintroduceaperiastronshiftalreadyatthelevelofNewtoniantheory.Foracoupleofmainsequencestarbinariesthetotalapsidalmotionϕ˙tothasbeendeterminedfromobservationalevidence.Comparedwiththecontributionϕ˙relpredictedbyGRitbecameobviousthatinallsystemstheNewtonianperturbationsgivethedominantcontributiontoϕ˙tot(foranoverviewseee.g.[9]).Thisisduetothe”soft”equationsofstategoverningthestellarmatterofmainsequencestars.ForcompactstarbinariesNewtonianperturbationsareoftenneglected.Inparticular,itisoftenarguedthattheeffectofthespin-inducedquadrupoleistoosmallunlessthecompactstar(e.g.aneutronstar)isrotatingnearthemass-sheddinglimit[3].However,evenforNS-NSorNS-BHbinariesthisargumentdoesnotholdcompletely.IthasbeenshowninprevioussectionsthatforcloseNS-NSbinariesthepotentialenergyintroducedbythecouplingcanbeconsiderablylargerthanthecorresponding1.5pNorbitalcorrectionterms,thoughitissmallerbyafactor100ormorethanthe1pN
Nexttoleadingordergravitationalwaveemission16
contribution.Thus,alreadyatthelevelofthefirstpost-NewtonianapproximationintheEoMtherotationaldeformationinducesanon-relativisticperiastronshift,whichaccumulatesoveralargenumberofperiods(figures3)and4).Inordertoobtainhighlyaccuratetemplatesitisthusdesirabletotakeintoaccountthesecorrectionsproperly,atleastforfastspinningneutronstarsinacompactbinarysystem.
Withthespace-boundlaserinterferometricdetectorLISAathandthefrequencybandaccessibletoobservationswillbeextendedtomuchlowerfrequencies(10−1to10−4Hz),whichenlargesthenumberofpossiblesourcesenormeously.Inparticular,withLISAnotonlyBH-BH,NS-NSandNS-BHbinariesshouldbedetectable,butalsowhitedwarfbinaries.Inparticulartothisclassofcompactbinariestheanalysisshowninthispaperapplies.IthasbeenarguedbyWillemsetal.inarecentpaper[21]that–contrarytoprevailingopinions–theremightexistaclassofeccentricgalacticdoublewhitedwarfs,whichareformedbyinteractionsintidalclusters.Willemsetal.showedthattidesandstellarrotationstronglydominatetheperiastronshiftatorbitalfrequencies≥1mHz.ThephaseshiftsinducedbytheseNewtonianperturbationsaremuchlargerthanthegeneralrelativisticcorrectionsthen.TheyconcludethatitisessentialtoincludephaseshiftsgeneratebyNewtonianperturbationsintothesignaltemplatesinordertonotbiasLISAsurveysagainsteccentricdoublewhitedwarfs.Generally,neglectingthecontributiontoϕ˙totinducedbyrotationaldeformationwillleadtoanoverestimationofthetotalmassderivedfromϕ˙tot.
Inthispaperthecompetinginfluencesoftherotationaldeformationandthe1pNcorrectiontermswereexaminedinmoredetail.Inparticular,wesucceededincalculatinga1pNquasi-Kepleriansolution,whichtakesintoaccountfinitesizeeffectsuptolinearorderinthequadrupoledeformationparameterq.Theresultsgiveninsection2arevalidaslongasq/J2isoftheorderO(c−2).ForwhitedwarfbinariesorbinarypulsarssuchasPSR1259-63theperiastronshiftinducedbyrotationaldeformationispossiblymuchlargerthanthegeneralrelativisticcontribution.Inthatcase,Eqs.(11-12)stillapplyinthelimitv/c→0.Insection3thepolarizationstatesofthegravitationalradiationfieldarecalculatedbeyondtheleadingorderapproximation.Fornon-spinningcompactbinariesthecorrespondingwaveformsareshowninfigures1and2.Inthesefigureswaveformscalculatedusingtheleadingorderexpressionsh+,×(0)arecomparedtothe
(1)(2)
1pNcorrectwaveformswiththenexttoleadingordercorrectionsh+,×andh+,×taken
(1)
intoaccount.Thefirstcorrection,h+,×,isnontrivialonlyfordifferentmassbinaries,i.e.forequal-massbinariesthefirstnon-vanishingcorrectiontotheleadingorderformulaappearsattheorderO(c−2).
Theinfluenceoftheq-couplingonthegravitationalwaveformsisshowninfigures3and4.Asexpected,thespin-inducedquadrupolemomentleadstoaphaseshiftcomparedtothepurepoint-particleGWemission.Moreover,thequadrupoledeformationofthespinningcompactobjectsspeedsuptheinspiralprocess,ashasbeenshowninfigures5and6foranequal-massbinaryinaslightlyellipticorbit.
Moreanalysisisneededinordertofullyunderstandtheimprintoffinitesizeeffectsontothegravitationalwavepatternofclosecompactbinarysystemsbeyondtheleadingorder.
Nexttoleadingordergravitationalwaveemission17
Inparticularitwouldbehighlydesirabletoincludethestellaroscillationmodesintothecalculations.Frompreviousworksitisexpectedthatinthesecasessocalledtidalresonanceswillhaveanimportantimpactontheinspiralprocessandthegravitationalwaveemissionofthebinary[4],[5],[7].Acknowledgements
IamgratefultoGerhardSch¨aferforhelpfuldiscussionsandcarefulreadingofthemanuscript.ThisworkissupportedbytheDeutscheForschungsgemeinschaft(DFG)throughSFB/TR7”Gravitationswellenastronomie”.AppendixA.Usefulrelations
ThemassandcurrentmultipolemomentsIlmandSlm(m=−l,...,l)thatareirreduciblydefinedwithrespecttotheorbitalangularmomentumaxisarerelatedtoIAlandJAlaccordingto
Ilm(t)=
16π
(l+1)(l+2)
(l+1)(2l+1)!!
where,form≥0,
2(l−1)l
lm∗
JAlYA,l
(A.2)
lmm
YA=(−1)(2l−1)!!l
4π(l−m)!(l+m)!
l|m|∗
332121
(A.3)(δi1+iδi1)···(δim+iδim)δim+1···δil,
and
lm
YA=(−1)mYAl
l
form<0.(A.4)
Thecomplexconjugatesaregivenby
Ilm∗=(−1)mIl−m,
Slm∗=(−1)mSl−m.
(A.5)
Thepure-spintensor-sphericalharmonicsareorthonormalontheunitsphere.Forthecomplexconjugatethefollowingrelationholds:
TE/B2,lm∗=(−1)mTE/B2,l−m.
Defining
ˆ⊗Θˆ−Φˆ⊗Φˆ,Υ+≡Θ
ˆ⊗Φˆ+Φˆ⊗ΘˆΥ−≡Θ
(A.7)(A.8)(A.6)
theexpressionsneededinthepaperread
22iΦE2,22
(1+cosΘ)Υ++2icosΘΥ−,eT=
128πTE2,20=
π
sin2ΘΥ+,
Nexttoleadingordergravitationalwaveemission
iΦB2,21
sinΘeiΥ+−cosΘΥ−,T=−
32πT
E2,33
18(A.9)(A.10)(A.11)(A.12)(A.13)(A.14)(A.15)(A.16)
TT
E2,31
=
B2,32
=−sinΘe256π=−e
128ππ512π256π
sinΘe
2iΦ
iΦ
3iΦ
TB2,30=TT
E2,44
cosΘsin2ΘΥ−.sinΘee
2iΦ2
4iΦ
22
2i(2cosΘ−1)Υ+−cosΘ(3cosΘ−1)Υ−,
2
(1+cosΘ)Υ++2icosΘΥ−,
(3cosΘ−1)Υ++2icosΘΥ−,
2
(1+cosΘ)Υ++2icosΘΥ−,
2
==
E2,42
TE2,40=−
128π
256π
(7cos4Θ−8cos2Θ+1)Υ+.
422
(7cosΘ−6cosΘ+1)Υ++icosΘ(7cosΘ−5)Υ−,
AppendixA.1.Symmetrictracefreetensors
Throughoutthispapersymmetric-tracefree3rdand4thranktensorsareused.Symmetrizingatensorofrankprequirestotaketheproperlyweightedsumoverallindexpermutations,
1≡T(i1...ip)=Tisymm
1...ip
(−1)k(2p−2k−1)!!
(2p−1)!!
δabT(cii)+δbcT(aii)+δacT(bii),
5
Tabcd=T(abcd)−
(A.20)
1
35
[δacδbd+δadδbc+δabδcd]T(iijj).(A.21)
Nexttoleadingordergravitationalwaveemission19
AppendixB.Expressionsforh+andh×intermsofgeneralizedcoordinatesandmomenta
Theexpressionsfortheleadingandnexttoleadingordercontributiontothepolarizationstatesofthegravitationalwavefield,h+andh×,read
2
p3qGµϕ(0)2
1+cos2(Φ−ϕ)p−h+=r
µ2r
sin2Θ2
GMµ
sin2(Φ−ϕ)−−,(B.1)rr22r2
pϕGMµ2G(1)
sinΘh+=
Mµ23
p27ϕ2
−pr−
2r
GMµ2
prcos(Φ−ϕ)22r2
GMµ21+cos2Θ
−2−
r2
p27ϕ2
sin3(Φ−ϕ)−3pr+rr2
5(3ν−1)sin2Θ
(ν−10)−
Dc6r2r2
GM+
r2
42
1+cosΘpr+(10−ν)+5(3ν−1)
r2µ4r4
p2GMϕ
+
3
p2prpϕGMϕ2
p+sin2(Φ−ϕ)r
7µ23
22
p2GMϕ222
18p−51sinΘ(1+cosΘ)cos4(Φ−ϕ)7r
24µ2r
2
p2pprpϕrϕ−6−µ4µ4r4r2pϕ1−3ν
+24+
µ2
4
pϕGM
+6+
r2r2µ4
p2prpϕϕ
−+
µ2r
Nexttoleadingordergravitationalwaveemission
−1−3νGM
r2
1−3ν
µ2r2
r2
+6
p2r
µ2r2
2
20
−−
p
ϕ4+GM
2r2
r
−2
GMµ23
(B.6)
r2
−2
Dc
2
pr
cosΘsin2(Φ−ϕ)−4
+2∆m
prpϕ
pϕ
µ2r2
GMµ2
r
2
Dc5
2
pϕ
+prsin(Φ−ϕ)p2+r−6p2r
+2
p2ϕ
2
r2
+pϕ
r2
µ4
p4ϕ4
pr−
(10−ν)
Dc
5
cosΘsin2(Φ−ϕ)6
p2ϕ
21+prpϕ
µ2r
r
1−3νGMp2r2−sinΘcos4(Φ−ϕ)−
µ2rµ2r2
22
p2GMϕ2
51sinΘsin4(Φ−ϕ)7
12µ2r
2
p2p1−3νprpϕrϕ−6−µ4µ4r4r
2
ppprϕϕ
(7cos2Θ−5)+42µ2r
p2p4G2M2ϕr2
18p−3−+sin2(Φ−ϕ)−7r
µ2rµ4r4
p2GMϕ2
(3cosΘ−1)cos2(Φ−ϕ)+46µ2r
r2
(3ν−1)7
Nexttoleadingordergravitationalwaveemission
themultipoleexpansion(27).DefiningF(u)≡1−ercosuoneobtains
S
(2)21
=
32π
1−e2r
π
1−e2r
2−2iϕ
3
7
(1−3ν)µEe
F(u)3
ersinu−4i
π
F(u)
1−
q
E
F(u)
δ+
F(u)
+
2(19ν−4)F(u
,
I(2)22=4
5
µEe
−2iϕ
−1+3
F(u)2
+2i
er)3F(u)2+5q+
4e2rsin2
u
1−e2rsinu
F(u)1−e2r−
ercosu
42c
2
9(3ν−1)−3(51ν−115)F(u)2
−4(111ν−2)
1−e2r
2π
F(u)
−i
F(u)
1−
5/62π
F(u)
1+
4(1−e2r)
1−e2r
+
4(1−e2r)
21(1−3ν)µE
2
5
F(u)6−
6
F(u)2+
5(1−e2r)
63
√
F(u)−
7−12e2r
F(u)3
−3i
er
F(u)2
4+
1
e2r)
9
(1−3ν)µE2e−4iϕ7
6−6
F(u)2−
27(1−+6i
erF(u)2
4+1
F(u)2
F(u)4
.
21
(C.4)
(C.10)
Nexttoleadingordergravitationalwaveemission22
[1]A.GopakumarR.-M.MemmesheimerandG.Sch¨afer.Thirdpost-Newtonianaccurategeneralized
quasi-Keplerianparametrizationforcompactbinariesineccentricorbits.Phys.Rev.D,70:104011,2004.[2]C.K¨onigsd¨orfferandA.Gopakumar.Post-Newtonianaccurateparametricsolutiontothe
dynamicsofspinningcompactbinariesineccentricorbits:Theleadingorderspin-orbitinteraction.Phys.Rev.D,71:024039,2005.
[3]D.LaiandA.G.Wiseman.Innermoststablecircularorbitofinspiralingneutron-starbinaries:
Tidaleffects,post-Newtonianeffects,andtheneutron-starequationofstate.Phys.Rev.D,:3958,1996.
[4]K.D.KokkotasandG.Sch¨afer.Tidalandtidal-resonanteffectsincoalescingbinaries.Mon.Not.
R.Astron.Soc.,275:301,1995.
[5]W.C.G.HoandD.Lai.Resonanttidalexcitationsofrotatingneutronstarsincoalescingbinaries.
Mon.Not.R.Astron.Soc.,308:153,1999.
[6]F.A.RasioD.LaiandS.L.Shapiro.Hydrodynamicinstabilityandcoalescenceofbinaryneutron
stars.Astrophys.J.,420:811,1994.
[7]D.Hansen.Motionandgravitationalradiationofabinarysystemconsistingofanoscillatingand
rotatingcoplanardustydiskandapoint-likeobject.Gen.Rel.Grav.,37:1781,2005.[8]G.Sch¨afer.Gravitomagneticeffects.Gen.Rel.Grav.,36,2004.
[9]A.ClaretandB.Willems.Newresultsontheapsidal-motiontesttostellarstructureandevolution
includingtheeffectsofdynamictides.Astron.Astrophys.,388:518,2002.
[10]S.Johnstonetal.PSR1259-63-abinaryradiopulsarwithabestarcompanion.Astrophys.J.,
387:L37,1992.
[11]T.DamourandN.Deruelle.Generalrelativisticcelestialmechanicsofbinarysystems.i.the
post-Newtonianmotion.Ann.Inst.H.Poincar´e,43:107,1985.
[12]N.Wex.Atimingformulaformain-sequencestarbinarypulsars.Mon.Not.R.Astron.Soc.,
298:67,1998.
[13]B.M.BarkerandR.F.O’Connell.Derivationoftheequationsofmotionofagyroscopefromthe
quantumtheoryofgravitation.Phys.Rev.D,2:1428,1970.
[14]L.BildstenD.LaiandV.A.Kaspi.Spin-orbitinteractioninneutronstar/main-sequencebinaries
andimplicationsforpulsartiming.Astrophys.J.,452:819,1995.
[15]T.G.Cowling.Onthemotionoftheapsidallineinclosebinarysystems.Mon.Not.R.Astron.
Soc.,98:734,1938.
[16]S.Chandrasekhar.Theequilibriumofdistortedbodies.ii)thetidalproblem.Mon.Not.R.
Astron.Soc.,93:449,1933.
[17]S.L.ShapiroandS.A.Teukolsky.BlackHoles,WhiteDwarfsandNeutronStars.Wiley,New
York,1983.
[18]G.Sch¨afer.ReducedHamiltonianformalismforgeneral-relativisticadiabaticfluidsand
applications.Astron.Nachr.,311:213,1990.
[19]K.S.Thorne.Multipoleexpanionofgravitationalradiation.Rev.Mod.Phys.,52,1980.[20]W.JunkerandG.Sch¨afer.Binarysystems:higherordergravitationalradiationdampingand
waveemission.Mon.Not.R.Astron.Soc.,2:146,1992.
[21]A.VecchioB.WillemsandV.Kalogera.ProbingwhitedwarfinteriorswithLISA:periastron
precessionineccentricdoublewhitedwarfs.arXiv:0706.3700.
[22]F.A.E.Pirani.Introductiontogravitationalradiationtheory.InF.A.E.PiraniA.Trautmann
andH.Bondi,editors,LecturesonGeneralRelativity,BrendelsSummerInstituteinTheoreticalPhysics19,Vol.1,chapter2,page287.NewJersey,1965.
Nexttoleadingordergravitationalwaveemission
0.03 0.02 0.01 0-0.01-0.02-0.03-0.04
23
0 0.5 1 1.5 2
Nexttoleadingordergravitationalwaveemission
0.02 0.015 0.01 0.005
0-0.005-0.01-0.015-0.02-0.025
0
1
2
3
4
5
24
Nexttoleadingordergravitationalwaveemission
0.04 0.03 0.02 0.01 0-0.01-0.02-0.03-0.04
25
0 10 20 30 40 50 60 70
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- sarr.cn 版权所有 赣ICP备2024042794号-1
违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务