您好,欢迎来到飒榕旅游知识分享网。
搜索
您的当前位置:首页Towards a

Towards a

来源:飒榕旅游知识分享网
TowardsaTheoryoftheStriateCortex1

PublishedinNeuralComputation,Vol6,number1,January1994,p127-146

ZhaopingLiandJosephJ.AtickTheRockefellerUniversity

1230YorkAvenueNewYork,NY10021,USA

Abstract

Weexplorethehypothesisthatlinearcorticalneuronsareconcernedwithbuildingaparticulartypeofrepresentationofthevisualworld—onewhichnotonlypreservestheinformationandtheefficiencyachievedbytheretina,butinadditionpreservesspatialrelationshipsintheinput—bothintheplaneofvisionandinthedepthdi-mension.Focusingonthelinearcorticalcells,weclassifyalltransformshavingtheseproperties.Theyaregivenbyrepresentationsofthescalingandtranslationgroup,

’(integers).Anygivenandturnouttobelabeledbyrationalnumbers‘

predictsasetofreceptivefieldswhichcomeatdifferentspatiallocationsandscales(sizes)withabandwidthofoctaves,and,mostinterestingly,withadiversityof‘’cellvarieties.Thebandwidthaffectsthetrade-offbetweenpreserva-tionofplanaranddepthrelations,and,wethink,shouldbeselectedtomatchstruc-turesinnaturalscenes.Forbandwidthsbetweenandoctaves,whicharetheoneswefeelprovidethebestmatching,wefindforeachscaleaminimumoftwodistinctcelltypesthatresidenexttoeachotherandinphasequadrature,i.e.,differbyinthephasesoftheirreceptivefields,asarefoundinthecortex,theyresemblethe“even-symmetric”and“odd-symmetric”simplecellsinspecialcases.Aninterest-ingconsequenceoftherepresentationspresentedhereisthatthepatternofactivationinthecellsinresponsetoatranslationorscalingofanobjectremainsthesamebutmerelyshiftsitslocusfromonegroupofcellstoanother.Thisworkalsoprovidesanewunderstandingofcolorcodingchangesfromtheretinatothecortex.

1.Introduction

Whatisthepurposeofthesignalprocessingperformedbyneuronsinthevisualpath-way?Aretherefirstprinciplesthatpredictthecomputationsoftheseneurons?Recentlytherehasbeensomeprogressinansweringthesequestionsforneuronsintheearlystagesofthevisualpathway.InAtickandRedlich(1990,1992)aquantitativetheory,basedontheprincipleofredundancyreduction,wasproposed.Ithypothesizesthatthemaingoalofretinaltransformationsistoeliminateredundancyininputsignals,particularlythatduetopairwisecorrelationsamongpixels—second-orderstatistics.2Thepredictionsofthetheoryagreewellwithexperimentaldataonprocessingofretinalganglioncells(AtickandRedlich1992,Aticketal1992).

Giventhesuccessesofthistheory,itisnaturaltoaskwhetherredundancyreductionisacomputationalstrategycontinuedintothestriatecortex.Onepossibilityisthatcor-ticalneuronsareconcernedwitheliminatinghigher-orderredundancy,whichisduetohigher-orderstatistics.Wethinkthisisunlikely.Toseewhy,werecallthefactsthatmakeredundancyreductioncompellingwhenappliedtotheretina,andseethatthesefactsarenotasrelevantforthecortex.

First,theretinahasaclearbottleneckproblem:theamountofvisualdatafallingontheretinapersecondisenormous,oftheorderoftensofmegabytes,whiletheretinaloutputhastofitintoanopticnerveofadynamicrangesignificantlysmallerthanthatoftheinput.Thus,theretinamustcompressthesignal,anditcandosowithoutsignificantlossofinformationbyreducingredundancy.Incontrast,afterthesignalispasttheopticnerve,thereisnoidentifiablebottleneckthatrequirescontinuedredundancyreductionbeyondtheretina.

Second,eveniftherewerepressuretoreducedata3,eliminatinghigher-orderstatisticsdoesnothelp.Thereasonisthathigher-orderstatisticsdonotcontributesignificantlytotheentropyofimages,andhencenosignificantcompressioncanbeachievedbyeliminat-ingthem(forreviewsofinformationtheoryseeShannonandWeaver1949;Atick1992).Thedominantredundancycomesfrompairwisecorrelations.4

Thereisanotherintrinsicdifferencebetweenhigherandsecond-orderstatisticsthatsuggeststheirdifferenttreatmentbythevisualpathway.Fig.showsimageandan-otherimagewhichwasobtainedbyrandomizingthephasesofthefouriercoefficientsof.thushasthesamesecond-orderstatisticsasbutnohigherorderones.Contraryto,hasnoclearformsorstructures(cf.Field1989).Thissuggeststhatsecond-orderstatisticsareuseless,whilehigher-orderonesareessential,fordefiningformsandfordis-criminatingbetweenimages.Actually,eliminatingtheformerhighlightsthehigher-orderstatisticswhichshouldbeusedtoextractformsignalsfrom“noise.”5

Sowhatisthecortexthentryingtodo?Ultimately,ofcourse,thecortexisconcernedwithobjectandpatternrecognition.Onepromisingdirectioncouldbetousestatisticalregularitiesofimagestodiscovermatchedfilterswhichleadtobetterrepresentationsforpatternrecognition.Researchinthisdirectioniscurrentlyunderway.However,thereisanotherimportantproblemthataperceptualsystemhastofacebeforetherecognitiontask.Thisistheproblemofsegmentation,orequivalently,theproblemofgroupingfeaturesaccordingtoahypothesisofwhichobjectstheybelongto.Itisacomplexproblem,whichmayturnoutnottobesolvableindependentlyfromtherecognitionproblem.However,sinceobjectsareusuallylocalizedinspace,wethinkanessentialingredientforitssuc-cessfulsolutionisarepresentationofthevisualworldwherespatialrelationships,bothintheplaneofvisionandinthedepthdimension,arepreservedasmuchaspossible.

Inthispaperwehypothesizethatthepurposeofearlycorticalprocessingistopro-ducearepresentationthat1.preservesinformation,2.isfreeofsecond-orderstatistics,and3.preservesspatialrelationships.Thefirsttwoobjectivesarefullyachievedbytheretinasowemerelyrequirethattheybemaintainedbycorticalneurons.Wethinkthe

retinotopicandscaleinvariantsampling);thirdobjectiveisattemptedintheretina(

however,itisonlycompletedinthecortexwheremorecomputationalandorganizationalresourcesareavailable.

Here,wefocusonthecorticaltransformsperformedbytherelativelylinearcells,thefirsttworequirementsimmediatelylimittheclassoftransformsthatlinearcellscanper-formontheretinalsignalstotheclassofunitarymatrices6,with.Sotheprincipleforderivingcorticalcellkernelsreducestofindingthethatbestpreservesspatialrelationships.Actually,preservingplanaranddepthrelationshipssimultaneouslyrequiresatradeoffbetweenthetwo(sectiontwo).Thisimpliesthatthereisafamilyof’s,oneforeverypossibletradeoff.Eachislabelledbythebandwidthoftheresultingcellfiltersandformsarepresentationofthescalingandtranslationgroup(sectionthree).Weshowthattherequirementofunitaritylimitstheallowedchoicesofbandwidths,andforeachchoicepredictstheneededcelldiversity.Thebandwidththatshouldultimatelybeselectedistheonethatbestmatchesstructuresinnaturalscenes.Forbandwidthsaroundoctaves,whicharetheoneswefeelaremostrelevantfornaturalscenes,thepredictedcellkernelsandcelldiversityresemblethoseobservedinthecortex.

Theresultingcellkernelsalsopossessaninterestingobjectconstancyproperty:whenanobjectinthevisualfieldistranslatedintheplaneorperpendiculartotheplaneofvision,thepatternofactivationitevokesinthecellsremainsintrinsicallythesamebutshiftsitslocusfromonegroupofcellstoanother,leavingthesametotalnumberofcellsactivated.Theimportanceofsuchrepresentationsforpatternrecognitionhasbeenstressedrepeat-edlybymanypeoplebeforeandrecentlybyOlshausenetal(1992).Furthermore,thisworkprovidesanewunderstandingofcolorcodingchangefromthesingleopponencyintheretinatothedoubleopponencyinthecortex.2.ManifestingSpatialRelationships

Inthissectionweexaminethefamilyofdecorrelatingmapsandseehowtheydifferinthedegreewithwhichtheypreservespatialrelationships.Westartwiththeinput,repre-sentedbytheactivitiesofphotoreceptorsintheretina,xwherexlabelsthespatial

¯¯

locationofthe’thphotoreceptorinatwo-dimensional()grid.Forsimplicitywetakethegridtobeuniform.Tofocusontherelevantissueswithoutthenotationalcomplex-ityof,wefirstexaminetheone-dimensional()problemandthengeneralizetheanalysistoinsectionfour.Theautocorrelatorofthesignalsis

(1)

wherebracketsdenoteensembleaverage.Toeliminatethisparticularredundancyonehastodecorrelatetheoutputandthenapplytheappropriategaincontroltofitthesignalsintoalimiteddynamicrange.Thiscanbeachievedbyalineartransformation

(2)

where

denotematrices:

andthekernel

istheproductoftwomatrices.Usingbold-faceto

(3)

istherotationtotheprincipalcomponentsof:,wherearetheeigenvaluesof.Whileisthegaincontrolwhichisadiagonalmatrixwithelements.Thustheoutputhastheproperty

(4)

Animportantfacttonoteisthatredefiningbywhereisaunitaryma-trix()doesnotalterthedecorrelationproperty(4).(Actuallyshouldbeanorthogonalmatrixforreal,butsincewewillforconvenienceusecomplexvariables,unitaryisappropriate.)Therefore,thereisawholefamilyofequallyefficientrepresen-tationsparametrizedby.Anymemberisdenotedby

(5)

whereisthetransformationtotheprincipalcomponents.Withoutcompro-misingefficiency,thisnon-uniquenessallowsonetolookforaspecificthatleadstowithotherdesirablepropertiessuchasmanifestspatialrelationships.7

Toseethisletusexhibitthetransformationmoreexplicitly.Fornaturalsignals,theautocorrelatoristranslationallyinvariant,inthesensethat.Onecan

thendefinetheautocorrelatorbyitsfouriertransformoritspowerspectrum,whichin

isff,wherefisthespatialfrequency(Field1987,Ruderman1992).For

¯¯¯

illustrationpurposeswetakeinthissectiontheanalogous“scaleinvariant”spectrum,namely.Intheanalysisofsectionfourweusethemeasuredspectrum

f.¯

Foratranslationallyinvariantautocorrelator,thetransformationtoprincipalcompo-nentsisafouriertransform.Thismeans,theprinciplecomponentsofnaturalscenesortherowvectorsofthematrixaresinewavesofdifferentfrequencies

(6)

where

ifisodd

ifiseven

Whilethegaincontrolmatrixbecomes

is

.Thetotaltransformthen

(7)

Thisperformsafouriertransformandatthesametimenormalizestheoutputsuchthatthepowerisequalizedamongfrequencycomponentsconst.,outputiswhitened.Oneundesirablefeatureofthetransformationisthatitdoesnotpreservespatialrelationshipsintheplane.Asanobjectistranslatedinthefieldofviewthelocusofresponsewillnotsimplytranslate.Alsotwoobjectsseparatedintheinputdonotactivatetwoseparategroupsofcellsintheoutput.Typicallyallcellsrespondtoamixtureoffeaturesofallobjectsinthevisualfield.Segmentationisthusnoteasilyachievableinthisrepresentation.

Mathematically,wesaythattheoutputpreservesplanarspatialrelationshipsintheinputif

when(8)

where.Inotherwords,atranslationintheinputmerelyshiftsthe

outputfromonegroupofcellstoanother.Implicitly,preservingplanarspatialrelation-shipalsorequires,andwewillthereforeenforce,thatthecellreceptivefieldsbelocal,soa

spatiallylocalizedobjectevokesactivitiesonlyinalocalcellgroup,whichshiftsitsloca-tionwhentheobjectmovesandisseperatedfromanothercellgroupevokedbyanotherspatiallydisjointobjectintheimageplane.Technicallyspeakinganthatsatisfies(8)issaidtoformarepresentationofthediscrete“translationgroup”.

Insistingon(8)picksupauniquechoiceof.Infactinthiscaseisgivenby

(9)

whichisjusttheinversefouriertransform.Theresultingtransformation

givestranslationallyinvariantcenter-surroundcellkernels

U=

..

.

Eachsubmatrixhasdimensionandgivesrisetocellswithoutputslo-catedatlatticepointsfor.Sincetheblockmatricesact

whicharethefouriermodesoftheinputs,theresultingcellsinanygivenblockon

filtertheinputsthroughalimitedandexclusivefrequencybandwithfrequenciesfor

.Sincethesecellssamplemoresparselyontheoriginal

visualfield.Notice,thecellsfromdifferentblocksarespatiallymingledwitheachotherandtheirtotalnumberaddupto.Thehopeistohavetranslationinvariancewithineachblockandscaleinvariancebetweenblocks,i.e.,

forfor

and

(11)(12)

Eachblock‘’thusrepresentsaparticularscale,thetranslationinvariancewithinthatscalecanbeachievedwitharesolution,inverselyproportionalto.Largerblocksorlargerthusgivebettertranslationinvariance,andthesingleblockmatrix

achievesthissymmetrytothehighestpossibleresolution.Ontheother

hand,ahigherresolutioninscalinginvariancecallsforasmaller.Aswewillseebelow,,whereisthesmallestfrequencysampledbytheblock.Henceabetterscalinginvariancerequiressmallerblocksizes.Atrade-offbetweenbettertranslationandscalinginvariancereducestochoosingthescalingfactor,orthebandwidthdependingonit.Thiswillbecomecleareraswenowfollowthedetailedconstructionof.Theunitarityconditionnowrequireshavingforeach,resultinginoutputcellsuncorrelatedwithineachscaleandbetweenscales.Toconstruct,onenoticesthattherequirementoftranslationinvarianceisequiva-lenttohavingidenticalreceptivefields,exceptforaspatialshiftofthecenters,withineachscale.Itforces.Forageneral,itturnsoutthattheconstraintforcannotbesatisfiedifoneinsistsononlyonecellorreceptivefieldtypewithinthescale.Howeverifoneallowstheexistenceofseveral,say‘’,celltypeswithinthescale,isagainpossible.Inthiscase,eachcellisidenticalto(oristheoff-celltypeof)theonethatislatticespacesawayinthesamescalelattice(i.e.).Themostgeneralchoiceforrealreceptivefieldsisthen

if

if

(13)

6

whereisanarbitraryphasewhichcanbethoughtofaszeroforsimplicityatthemoment,and

for.Includingboththepositiveandthenegativefrequencies,thetotalnumberoffrequenciessampled,and,sinceisasquarematrix,thetotalnumberofcellsinthisscale,is.Theconstraintofunitarityforleadstotheequation

thenleadstothenon-trivialconsequence

(17)

Inadiscretesystem,theonlyacceptablesolutionsarethosewhereisaninteger.Forexamplethechoiceofandleadstothescaling.Thisisthemostinterestingsolutionasdiscussedbelow.Mathematicallyspeaking,inthecontinuumlimitalargeclassofsolutionsexists,sinceinthatlimitonetakesandsuchthatremainsfinite,thenwearesimplyleadtoforanyand.Thusrepresentationsofthescalingandtranslationgrouparepossibleforallrationalscalingfactors.Thebandwidth,,ofthecorrespondingcellsis

.

Interestingconsequencesfollowfromtherelationshipbetweencellbandwidthanddiversity:

Suchconstructionsneedonlyonefiltertypeineachscaleandgivescalefactorsnolargerthan(equivalentlythelargestbandwidthisoctave—e.g.,thewell-knownHaarbasiswavelets(Daubechies1988)).Thisagreeswithwhatwederivedaboveforthespecialcaseofwhere.However,allowinggivesmorebandwidthchoicesinourconstruction.Forexample,gives,howevernolargerthanoctaves,andgives,nolargerthanoctaves,etc.TheseresultsalsoagreewiththerecenttheoremofAuscher(1992)whoprovedthatmultiscalerepresentationscanexistforscalingsbyanyrationalnumber,providedfiltertypesareallowedineachscale.Ourconclusionaboveyieldsexactlythesameresultbyredefiningand.Wearrivedatourconclusionindependentlythroughtheexplicitconstructionpresentedabove.8

Theconnectionbetweenthenumberofcelltypesandthebandwidththatispossibletoachieveissignificant.Webelievethebandwidthneededbycorticalcellsisdeterminedbypropertiesofnaturalimages.Itsvalueshouldbethebestcompromisebetweenplanaranddepthresolutionpreservationforthedistributionofstructuresinnaturalscenes.Actually,Field(1987,1989)examinedtheissueofbestbandwidthforfiltersthatmodelledcorticalcellsandfoundthatbandwidthsbetweenandoctavesbestmatchednaturalscenestructures.Ourresultshereshowthatcorticalcellscannotachievebandwidthsmorethanoneoctavewithouthavingmorethanonecelltype.

Nextweshowwhatthepredictedcellkernelslooklike.Forgenerality,wegivetheex-pressionforthekernelsinthecontinuumlimitforanyscalefactor

(19)

comeinvarieties.EvenandoddvarietiesForanygivenandthekernelsfor

areimmediatelyapparentwhenonesets,,and(areevenor

forevenorodd).InFig.weexhibittheevenandoddkernelsoddfunctionsof

intwoadjacentscalesandtheirspectra.Thekernels,whereischosen,aresimilartothecenter-surroundretinalganglioncells(howevertheyarelargerinsize),andhenceweneednottoexhibitthemhere.Ingeneral,though,cantakeanyvalue,and

theneighboringcellswillsimplydifferbyaphaseshift,orinquadrature,withoutnecessarilyhavingevenoroddsymmetryintheirreceptivefieldshapes.From(18),itiseasytoshowthatthekernelsforsatisfythefollowingrecursiverelations

wasnotthereineqn.(18).Theseresultscanbeextendedto

thewhiteningfactoris

where

Onenoticesthatthisextensionto2Drequiresachoiceoforientationssuchasthex-yaxes,breakingtherotationalsymmetry.Furthermore,itisnaturaltoaskiftheobjectconstancybytranslationsandscalingsshouldbeextendedtotheobjectrotationsintheimageplane—requiringthecellsberepresentationsoftherotationgroup.Atthispoint,itisnotclearwhethertherotationalinvarianceisnecessary(notingthatweusuallytiltourheadstoreadatiltedbookorfailtorecognizeafaceupsidedown),andwhethertherotationalinvariancecanbeincorporatedsimultanouslywiththetranslationandscalingoneswithoutincreasingthenumberofcells.Wewillleavethisoutsidethepaper.

9

9

Figs.,and,showthefivecelltypesoneencountersforthebreakinginandtheninecelltypesforthebreakinginFig.,respectively,forachoiceofscalingfactor.Finally,theobjectconstancyeqns.(11),(12)stillholdsince(20)and(21)extendtoas

xn¯¯

ff.¯¯

From(18)and(19),itisclearthatthecorticalkernels

onlybytherange

ofthefrequencyintegrationorselectivity.Thecorticalreceptivefieldsarelowpassorbandpassversionsoftheretinalones.Oneimmediateconsequenceofthisisthatmostcorticalcells,especiallythelowpassoneslikethoseintheCytochromeOxidaseBlobcells,havelargerreceptivefieldsthantheretinalones.Second,whenconsideringcolorvision,

andfortheluminanceandchrominancechannelsre-thepowerspectrums

spectively,differintheirmagnitudes.Inrealitywhennoisesareconsidered,thereceptivefieldfiltersarenotsimply

cortex.Theanalysisalsopredictsaninterestingrelationshipbetweenbandwidthsofcellsandtheirdiversityaswasdiscussedinsectionsthreeandfour.Oneconsequenceofthatrelationshipisthatforcellstoachievearepresentationoftheworldwithsamplingband-widthbetweenandoctavestheremustbeatleasttwocelltypesadjacenttoeachotheranddifferbyintheirreceptivefieldphases(Fig.).Thisbandwidthrangeistherangeofmeasuredbandwidthsofsimplecells(KulikowskiandBishop1981;AndrewsandPollen1979)andalso,wethink,isbestsuitedformatchingstructuresinnaturalscenes(cf.Field1987,1989).Thisanalysisthusexplainsthepresenceofphasequadrature(e.g.,pairedeven-oddsimplecells)observedinthecortex,(PollenandRonner1981):suchcelldiversityareneededtobuildafaithfulmultiscalerepresentationofthevisualworld.Theanalysisalsorequiresbreakingorientationsymmetry.Herewedonotwishtoadvocatescalingsymmetryasanexplanationfortheexistenceoforientedcellsinthecortex.Itmaybethatorientationsymmetryisbrokenforamorefundamentalreasonandthatscalingsymmetrytakesadvantageofthat.Eitherway,orientationsymmetrybreakingisanimportantingredientinbuildingthesemultiscalerepresentations.

Inthepast,therehasbeenasizeablebodyofworkontryingtomodelsimplecellsintermsof“Gabor”and“logGabor”filters(Kulikowskietal1982;Daugman1985,Field1987,1989).Suchfiltersarequalitativelyclosetothosederivedhere,andtheydescribesomeofthepropertiesofsimplecellswell.Ourworkdiffersfrompreviousworkinmanyways.Thetwomostimportantdifferencesarethefollowing.First,thefiltersherearederivedbyunitarytransformsonretinalfilterswhichreduceredundancyininputsbywhitening.Byselectingtheunitarytransformationthatmanifestsspatial-scalere-lationshipsinsignals,onearrivesatarepresentationthatexhibitsobjectconstancy—theoutputresponsetoaninputanditsplanaranddepthtranslatedversion(i.e.,

)arerelatedby

(22)

Henceavisualobjectmovedinspacesimplyshiftstheoutputsfromonegroupofcellstoanother.Second,wefindadirectlinkagebetweencellbandwidthanddiversity.Suchlinkagedoesnotappearinpreviousworkswhereorthonormalityorunitaritywasnotrequired.

Morerecentlytherehasalsobeenalotofworkonorthonormalmultiscalerepresen-tationsofthescalingandthetranslationgroup,alternativelyknownaswavelets(Meyer1985,Daubechies1988,Mallat1989).Therelationshipofourworktowaveletswasdis-cussedinsectionthree.Hereweshouldaddthatinthispaperweprovideexplicitcon-structionoftheserepresentationsforanyrationalscalingfactor.Furthermore,ourfilterssatisfy

.Thisdifferencestems

fromthefactthatourfiltersaretheconvolutionofthewhiteningfilterandthestandard-typewavelet.Thewhiteningfilter—givenby

constructionwithclassesofcellsinthecortex.First,thereistheclassoflowpasscells,whichhavelargereceptivefields,andnoorientationtuning(actuallysincetheirkernelshaveawhiteningfactor,theyarenotcompletelylowpassbutanincompletebandpass–weaksurround).WethinkagoodcandidateforthesecellsarethecellsintheCytochromeOxidaseBlobareasinthecortex.Whenweaddcolortoouranalysis,thisclasswillcomeouttobecoloropponent10.Thesecells,alowpassversionofthesingleopponentretinalcells,turnouttobedoubleopponentorcolor-opponent-center-only(seeFig.5)fromthismathematicalconstruction,inagreementwithobservations.Second,therepresentationrequiresseveralorientationclassesineverychoiceofhigherscale,theyarenotaslikelytobecolorselectiveand,withineachorientationandscale,therearetwotypesofcells—inphasequadrature(e.g.,evenandoddsymmetric)—ifthebandwidthofthecellsisgreaterthanoneoctave.Thesehavekernelssimilartosimplecells’.Also,insomechoicesofdivisionofthetwodimensionalfrequencyspaceintobands(seeFig.)oneencounterscellsthatareverydifferentfromsimplecells.Thesecellscomefromthebandpassregion

)andassuchpossessrelativelyinboththeanddirections(the‘bb’regioninFig.

smallreceptivefieldsinspace.ItisamusingtonotetheirresemblancetothetypeofcellsthatVanEssendiscoveredin(privatecommunication).

Itisimportantatthisstagetolookindetailforevidencethatcorticalneuronsarebuildingamultiscale,translationallyinvariantrepresentationoftheinputalongthelinesdescribedinthispaper.However,inlookingforthosewemustallowforthepossibilitythattheserepresentationsareformedinanactiveprocessstartingasearlyasthestriatecortex,aswasproposedrecentlyby(Olshausenetal1992).Wealsomustkeepinmindthattoperformdetailedcomparisonwithrealcorticalfilters,ourfiltershavetomodifiedtotakenoiseintoaccount.

AcknowledgmentsWewouldliketothankD.Field,C.GilbertandN.Redlichforusefuldiscussions,andtheSeaverInstituteforitssupport.Appendix

Inthisappendixweexaminetheconditionofunitarityonthematrix.Thematrixelementsofinthescalearegeneralizedfromthecasesimplyas

nj

¯¯

.

ApriorithecellsinsamplefromthefrequencyregioninsidethebigsolidboxbutoutsidethedashedboxinFig..Thecriticalfactthatmakesthecasedifferentfrom

isthattherearecellsinthe’thclass,whilethetotalnumberofcellsis,then.

Theunitarityrequirement

(

)canbeshowntobeequivalentto

(24)

isanyinteger.Asimilarconditioninthedirectionshouldalsohold.Towhere

satisfy(24)onecanonlyhopethatthecosinefactoriszeroforoddandthesinefactoriszerofortherest.Thisisimpossibleinalthoughpossiblein.Toseethisdifference,notethatin,andtheargumentofthesineiswhichleadstovanishingsineforeven.Onethenmakescosinetermzeroforoddbychoosingsuchthat.Thisisexactlyhowequation(16)isreached.In,

foreven.AlthoughwecannotprovethatthenegativeresultinisnotcausedbythefactthatwehaveaEuclideangrid,wethinkitnotpossibletoconstructtherepresentationevenwhenusingaradiallysymmetriclattice.Toensureunitarityof,weneedtoallowforcelldiversityofadifferentkind—cellsinscaleneedtobefurtherbrokendownintodifferenttypesororientations,eachtypesamplingfrom,alimitedregionofthefrequencyspaceasshownforexampleinFig..

13

References

[1]Andrews,B.W.andPollen,D.A.1979.Relationshipbetweenspatialfrequencyselec-tivityandreceptivefieldprofileofsimplecells.J.Physiol.(London),287,163–176.[2]Atick,J.J.1992.CouldInformationtheoryprovideanecologicaltheoryofsensory

processing?Network3,213–251.[3]Atick,J.J.andRedlich,A.N.1990.Towardsatheoryofearlyvisualprocessing.Neural

Comp.,2,308–320.[4]Atick,J.J.andRedlich,A.N.1992.Whatdoestheretinaknowaboutnaturalscenes?

NeuralComp.,4,196–210.[5]Atick,J.J.,Li,Z.andRedlich,A.N.1992.Understandingretinalcolorcodingfrom

firstprinciples.NeuralComp.,4,559–572.[6]Auscher,P.1992.Waveletbasesforwithrationaldilationfactor.InWaveletsand

theirapplications,pp.439–451,ed.Ruskai,MB.JonesandBartlett,Boston.

[7]Daubechies,I.1988.Orthonormalbasesofcompactlysupportedwaves.Commun.Pure

Appl.Math.,vol.41,909–996.[8]Daugman,J.G.1985.Uncertaintyrelationsforresolutioninspace,spatialfrequency

andorientationoptimizedbytwo-dimensionalvisualcorticalfilters.J.Opt.Soc.Am.A2,1160–1169.[9]Field,D.J.1987.Relationsbetweenthestatisticsofnaturalimagesandtheresponse

propertiesofcorticalcells.J.Opt.Soc.Am.,A4,2379–2394.[10]Field,D.J.1989.Whatthestatisticsofnaturalimagestellusaboutvisualcoding.

SPIEVol.1077HumanVision,VisualProcessing,andDigitalDisplay,269–276.[11]Grossmann,A.andMorlet,J.1984.Decompositionofhardyfunctionsintosquare

integrablewaveletsofconstantshape.SIAMJ.Math.vol.15,pp.17–34.[12]Hopfield,J.J.1991.Olfactorycomputationandobjectperception.Proc.Natl.Acad.

Sci.USA,88,6462–6466.[13]Kulikowski,J.J.,Marcelja,S.andBishop,P.1982.Theoryofspatialpositionand

spatialfrequencyrelationsinthereceptivefieldsofsimplecellsinthevisualcortex.Biol.Cybern.,43,187–198.[14]Kulikowski,J.J.andBishop,P.1981.Linearanalysisoftheresponsesofsimplecells

inthecatvisualcortex.Exp.BrainRes.44,386–400.[15]Linsker,R.1992.Privatecommunication.Seealso,talkatNIPS92.

14

[16]LivingstoneM.S.andHubelD.H.1984Anatomyandphysiologyofacolorsystem

intheprimatevisualcortex.J.ofNeurosci.Vol.4,No.1.309-356.[17]Mallat,S.1989.Atheoryofmultiresolutionsignaldecomposition:Thewaveletrepre-sentation.IEEEtransactionsonpatternanalysisandmachineintelligence,vol.11,674–693.[18]Meyer,Y.1985.Principed’incertitude,baseshilbertiennesetalgebresd’operateurs.

SeminaireBourbaki,nr.662,209–223.[19]Olshausen,B.,Anderson,C.H.andVanEssenD.C.1992.ANeuralmodelofvi-sualattentionandinvariantpatternrecognition.CaltechReportno.CNSMEMO18,August.[20]Pollen,D.A.andRonner,S.F.1981.Phaserelationshipsbetweenadjacentsimple

cellsinthecat.Science212,1409–1411.[21]Ruderman,D.L.1992.privatecommunicationandtoappear.

[22]Schreiber,W.F.1956.Themeasurementofthirdorderprobabilitydistributionsof

televisionsignals.IRETrans.Inform.TheoryIT-2pp.94–105.[23]Shannon,C.E.andWeaver,W.1949.Themathematicaltheoryofcommunication.(Ur-bana,Il;UniversityofIllinoisPress).[24]Ts’sD.Y.andGilbertC.D.1988Theorganizationofchromaticandspatialinterac-tionsintheprimatestriatecortex.J.ofNeurosci.8(5):1712-1727[25]VanEssen,D.C.,OlshausenB.,AndersonC.HandGallant,J.L.1991.Patternrecog-nition,attention,andinformationbottlenecksintheprimatevisualsystemConf.onVisualInformationProcessing:FromNeuronstoChips(SPIEProc.1473)Figures

15

Figure1::Demonstrationoftheuselessnessofsecond-orderstatisticsforformdefinitionanddiscrimination.Fol-lowing(Field1989),imageisconstructedbyfirstfouriertransforming,randomizingthephasesofthecoefficientsandthentakingtheinversefouriertransform.Thetwoimagesthushavethesamesecond-orderstatisticsbuthasnohigher-orderones.Allrelevantobjectfeaturesdisappearedfrom.

AB16

ReceptivefieldsSensitivity

AB

CD

SpatialDistanceSpatialfrequency

Figure2:Even-symmetric”,,,and“odd-symmetric”,,,kernelspredictedforthescalefactor(equivalently

octaves)fortwoneighboringscales(topandbottomrows,respectively),togetherwiththeirspectrafor

(frequencysensitivitiesorselectivities).

17

Figure3::Proliferationofmorecelltypesbythebreak-downofthefrequencysamplingregioninwithinagivenscale.Ignoringthenegativefrequencies,thefrequencieswithinthescaleareinsidethelargesolidboxbutoutsidethesmalldashedbox.Thesolidlineswithinthelargesolidboxfurtherpartitionthesamplingintosubregionsdenotedby‘bl’,‘lb’,and‘bb’,whichindicatebandpass-lowpass,lowpass-bandpass,andbandpass-bandpass,respec-andgiveasymmetricbreakdownbetweenanddirections,the‘lb’cellsarenottively,in-directions.

rotationofthe‘bl’cells.givessymmetricbreak-downbetweenanddirections.The‘bb’cellsequivalenttoa

aresignificantlydifferentfromtheothers,seeFig..

18

Figure4:Fig.:Thepredictedvarietyofcellreceptivefieldsin.ThefivecelltypesinandtheninecelltypesinarisefromthefrequencypartitioningschemesinFig.andFig.,respectively.Thekernelsinthelower-leftcornerofbothimagesdemonstratethelowpass-lowpassfilterinandtheyarenon-oriented.Allothersarebandpassinatleastonedirection.Thoseareactuallysignificantlysmallerbutareexpandedinsizeinthisfigurefordemonstration.The‘bb’cellsintheupper-rightpartofcomeinfourvarieties(even-even,odd-odd,even-oddand

istakenforbothxandydirections)andshouldexistinthecortexiftheschemeinFig.isodd-evenwhen

favored.AllkernelsareconstructedtakingintoaccounttheopticalMTFoftheeye.

AB19

Luminance (Solid) & Chrominance (Dashed)

100.

Sensitivity10.

1

0.11

SpatialFrequency(c/deg)

10.100.

Ganglion redGanglion green

StrengthBlob redBlob green

SpatialDistance

Figure5:Changeofcolorcodingfromretinatocortex.Thetopplotshowsthevisualcontrastsensitivitiestotheluminanceandchrominancesignals.Thebottomplotdemonstratesthereceptivefieldprofiles(sensitivitytoredorgreenconeinputs)ofthecolorselectivecellsintheretina(organglion)andthecortex.TheparametersusedfortheganglioncellsarethesameasthoseinAticketal1992.Theblobcellsareconstructedbylowpassfilteringtheganglion

wherec/deg.Thestrengthsofthecellprofilescelloutputswithafilterfrequencysensitivityof

areindividuallynormalizedforboththeganglionandtheblobcells.Therangeofthespatialdistanceaxes,orthesize,oftheblobcellsis3.7timeslargerthanthatofganglioncells.Thismeansthateachblobcellsumstheoutputsfrom(ontheorderof)atleastaboutlocalganglioncells.

20

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- sarr.cn 版权所有

违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务