ComputersandStructures69(1998)63±78
Applicationofarti®cialneuralnetworkstoload
identi®cation
X.Caoa,b,*,Y.Sugiyamac,Y.MitsuidCollegeofEng.,ShinshuUniv.,500Wakasato,Nagano380,Japan
bChinaFlightTestEstablishment,Xi'an7100,ChinacCollegeofEng.,Univ.ofOsakaPrefecture,Osaka593,Japan
dDept.ofCivilEng.,CollegeofEng.,ShinshuUniv.,500Wakasato,Nagano380,Japan
Received17December1996;accepted5February1998
aAbstract
Theintendedaimofthestudyistodevelopeanapproachtotheidenti®cationoftheloadsactingonaircraftwings,whichusesanarti®cialneuralnetworktomodeltheload-strainrelationshipinstructuralanalysis.
Asthe®rststepofthestudy,thispaperdescribestheapplicationofanarti®cialneuralnetworktoidentifytheloadsdistributedacrossacantileveredbeam.Thedistributedloadsareapproximatedbyasetofconcentratedloads.Thepaperdemonstratesthatusinganarti®cialneuralnetworktoidentifyloadsisfeasibleandawelltrainedarti®cialneuralnetworkrevealsanextremelyfastconvergenceandahighdegreeofaccuracyintheprocessofloadidenti®cationforacantileveredbeammodel.#1998ElsevierScienceLtd.Allrightsreserved.
Keywords:Arti®cialneuralnetwork;Loadidenti®cation;Inverseproblem
1.Introduction
Accurateandreliabledataonaircraftwingloadsarehighlynecessarynotonlytodesignanddevelopanair-craftbutalsotodrawupstrengthandrigidityspeci®-cationsforaircraft.However,duetothecomplexityofwingstructureandloadingconditions,itisdiculttodetermineaccurateandreliableaircraftwingloadsonlybymeansofwind-tunneltestsortheoreticalanalysis.Therefore,itisdesirabletoobtainwingloadsthrough¯ightteststosupplementandcon®rmtheresultsfromwind-tunneltestsandtheoreticalanalysis[1].Unlikeparameterssuchas¯ightheightorvelocity,¯ightloadscannotbedirectlyobservedandmeasuredin¯ight.Consequently,itraisesaninverseproblem,i.e.itisrequiredtoidentify¯ightloadsact-ingonaircraftwingsonthebasisofsomekindofstructuralresponseofthewing,suchasthestrainre-
*Correspondingauthor.
sponse,whichiscausedby¯ightloadsandcanbemeasuredin¯ight.
Eventhoughtherelationbetweenloadsandthestructuralresponseofthewingonlydependsonthewingstructureitself,duetothecomplexityofthewingstructure,therelationcannoteasilybeformulated.Inmostcases,whiledirectproblemsmaybeeasilyformu-lated,theirinverseproblemsareusuallydicultorevenimpossibletobeformulated.Thesolutiontotheproblemisfocusedon®ndingameansofestablishingaload-strainrelationshipthatrepresentsdynamicallymechanicalcharacteristicsofthewingstructure.
Arti®cialneuralnetworkshaveattractedconsider-ableattentionandshownpromiseformodelingcom-plexnonlinearrelationships.Arti®cialNeuralNetworksarederivedthroughamodelingofthehumanbrainandarecomposedofanumberofinter-connectedunits(arti®cialneurons)[2].
Asigni®cantbene®tofusinganANN-basedmodelisitsabilitytolearnrelationshipsbetweenvariableswithrepeatedexposuretothosevariables.Therefore,insteadofusingananalyticalrelationshipderivedfrom
0045-7949/98/$±seefrontmatter#1998ElsevierScienceLtd.Allrightsreserved.PII:S0045-7949(98)00085-6
X.Caoetal./ComputersandStructures69(1998)63±78
mechanicalneuraladaptivenetworkprinciplestraininglearnstoprocess.
themodelrelationshipasystem,thethrougharti®cialanneuralAmongvarioustypesofarchitectureofarti®cialsomeconstructattractivenetworks,featuresthemultilayer[3]:(1)neuralnetworkshaveinputindataatonon-linearmappingOnefunctioncanfromautomaticallymultipleTheadistributedmultiplemanneroutputthroughdataawithinthenetwork`generalization',trainednetworkhasafeaturetrainingoftheprocess;so-called(2)thedatawell-trainedi.e.networkakindestimatesofinterpolation,appropriatesuchthatworkevenoperatesforuntrainedquicklyinpatterns;anapplication(3)Theprocess.
trainedoutputnet-wellANNshavetheabilitytoconsiderbothdiscreteprocessingascontinuousneuralisoneofvariables.theMassivelyparalleldataasabilitynetworks.Arti®cialmainneuralfeaturesnetworksofhavearti®cialtheconcepttocanembeddedabstract.inSuchasequencenetworkscanextractthecoreizedthereforemodel[4].
beusedtoconstructoforinputidentifypatterns,anideal-andthisTakingadvantageoftheANNsdescribedabove,loadspaperworkactingproposesloadforconstructingonawinganautilizingapproachtoidentify¯ightmodelofANNstherelationshipastheframe-ofshownandprocesses.
instrainFig.1onandthecontainswingstructure.thefollowingTheapproachfoursub-is1.Groundcalibrationtest
beforeAnactualcalibrationa¯ightaircraftwingisusedasacalibratedobjecttheoreticalsamplestestandthatdistributedareselectedloadsareapplyedasaanalysisandthedesignloadonenvelopethebasisoverofdistributedwholeregion,areloadsinvaries.whichStraintheaerodynamiccenterofusedthenappliedinthemeasurednextphaseinorderaslearningtoresponsesgaindatadataofalongthatthewingwithwillthebe®rstternsphaseloads,dataforANNs.istoforpreparethearti®cialneuralnetworks.TheEventhoughvastamountstheobtainedoflearningpat-characteristicsetsaredatasets.
ofdiscretethewingmeasuredstructuredata,iscontainedthemechanicallearninginthe2.Trainingthearti®cialneuralnetwork
Usingunitsthestrainsasinputsignalsgiventotheinput(desiredofisoutputs),thenetwork,trainingandtheloadsarti®cialasteachingsignalsandperformedthecon®gurationdesiredoutputsiterativelyuntiltheerrorneuralbetweennetworkactualofreachesthearti®cialanacceptableneuralnetworklevel.Then,for
Fig.ingarti®cial1.Anapproachneuralnetworks.
fortheidenti®cationof¯ightloadsutiliz-identifyingwingloadsactingontheinvestigatedaircraftation''Inisthedecided.
theabilitysecondofphase,theANNtheis``learning''invoked.andThe``generaliz-tureload-strainautomaticallybutisdicultthatexistsinherentlyinthewingrelationstruc-ofandembeddedtoformulateinthewillwell-trainedbeconstructedANN.3.Flighttest
Measureloadstests.
inthethestrainmainresponsespartsofthecausedwingbythroughaerodynamic¯ight4.Identi®cationof¯ightloads
Inputtrained¯ight-measuredloadsarti®cialneuralstrainsnetworkoftheandwingidentifytothe¯ightwell-notedBybasedsynthesizingontheoutputstheaboveoftheneuralnetwork.
maywithbethatreplacedacomplicatedstructuraldescription,analysisitcanmodulebeblem,thisapproach.byanMoreover,arti®cialforneuralthenetworkdiscussedmodelpro-possiblethisobjectivetopropositionperformgroundhascalibrationtheadvantagethatitisandcientlyANNsaircraftareaswellcantoobtainlearningdatatestsforusingANNs,theaslearnaccuratelyfromtheevenlearningthoughpatternsthee-catedAsthestructures,discreteactually-measuredinsomecases,aredataextremely[3].
patternsbetweenandexternalthemechanicalexcitementandpropertiesstructuralorcompli-responses
relationsX.Caoetal./ComputersandStructures69(1998)63±7865
arediculttoformulate,thearti®cialneuralnetworkmodelbecomesamoreadequateoneavoidingcompli-catedorevenimpossibletheoreticalanalysis.Inthissense,ANNsarequiteusefulandpresentanon-negli-gibleadvantage.
Asthe®rststepofthestudy,thefeasibilityofusinganarti®cialneuralnetworktoidentifyloadsisinvesti-gatedinthepaper.Anaircraftwingissimpli®edintoacantileveredbeam.Distributedloadsareapproximatedbyasetofconcentratedloads.Thepaperdemonstratestheapplicabilityofanarti®cialneuralnetworktotheloadidenti®cationforacantileveredbeammodel.2.EstablishmentofaMechanicalModelforLoadIdenti®cation
2.1.Mechanicalmodelforloadidenti®cation
Becauseidentifying¯ightloadsactingonanaircraftwingutilizingarti®cialneuralnetworksisarelativelynewstudyandtherearemanyfactorsthatneedtobestudiedbeforeconducting¯ightloadidenti®cationaccordingtotheproposedapproach,theapplicabilityofarti®cialneuralnetworkstoloadidenti®cationis®rststudiedinthework.Sincethestudyisasimu-lationconductedatalaboratory,insteadofutilizinganactualwingasanobject,acantileveredbeamisinvestigated.Inotherwords,anaircraftwingissimpli-®edtoacantileveredbeam(Fig.2).Nonuniformdis-tributedloadsactingonthewingareapproximatedbyasetofconcentratedloadsthatareappliedinaverti-caldirectiontothebeamaxisasshowninFig.3.Somesetsofconcentratedloadsactingonthebeamwillbeidenti®edbasedonitsstrainresponsesafteraccomplishingthetrainingofarti®cialneuralnet-works.
InordertoverifytheapplicabilityofANNstoloadidenti®cation,theidenti®edresultsneedtobeexam-inedbycomparingthemtotheclosedformresultsfromsomekindoftheoreticalcalculation.Theclosedformresultsforthismodelcanbeobtainedfromthetheoreticalcalculationsbasedonstaticmechanics.
Thematerialofthebeamisassumedtobeakindofalloy,whichislinearlyelasticEanditsmod-ulesoflongitudinalelasticityisassumedtobe
5821Â10MPa(10kN/m)andthebendingrigidityEIis5625kNm2.
Fig.2.Mechanicalmodelforwingloads.
66X.Caoetal./ComputersandStructures69(1998)63±78
Fig.3.Modelforloadidenti®cation.
2.2.PreparationoflearningdataforANNs
Sincethestudyisconductedatalaboratoryinsteadofagroundcalibrationtest,thelearningdatatobeadoptedtotrainANNsarepreparedbytheoreticalanalysis.Meanwhile,inordertoexaminetheaccuracyoftheidenti®edresultsbyatrainedANN,anumberofdatasetsthatwillbeusedascheckpatternsarealsoprepared.
Thirteensetsofsimulationpatternsareestablished.Ineachpattern,11concentratedloadsand11strainresponsescausedbytheloadsarecontained.Thepos-itionsofactingpointsoftheconcentratedloadsandmeasuringpointsofstrainsarelocatedonthecantilev-eredbeamwhichhasbeenequallydividedinto10por-tions(Fig.3).
Sincethereisnomechanicalmeansofapplyingaconcentratedloadatbeam-root,forthecontinuityandsmoothnessofthecurveshapedbyconnectingthebeginningendsoftheloadvectors,loadP11isappliedatthepointwherethecoordinateinx-axisisnearzerobutnotzero.Here,itisgiventhatxP11=H=0.002masshowninFig.3.TheloadP11doesn'tin¯uencetheresultsmuch.InadditionconcerningE1,ifanymeasuredpointbetweenpoints1and2isadded,thestrainatthemeasuredpointwillin¯uencetheresultsandisnotzero.Theintermediatevaluesbetweenthestrainmeasuredpointsareobtainablebyinterpolation.Aseriesofcurves,whichcontainstraight-lines,obli-que±lineswithdierentgradientslopes,conecurved-lines,halfcircular-linesandellipse-lineswithdierentradiuslengths,parabola-linesandsoon,canbeobtainedifthebeginningendsoftheconcentratedloadvectorsaresmoothlyconnected.
SevenpatternsshowninFig.4areusedaslearningdataforarti®cialneuralnetworks,inwhichstrainsareusedasinputsignalsandloadsasteachingsignalsthatrepresentdesiredoutputs.Theremainingsixpatterns(Fig.13)areusedtochecktheaccuracyoftheident-i®edresultsbyatrainedANN.3.ComputationalPrincipleofANNs
Thefollowingsectionsgiveabriefoverviewofthecomputationalprincipleandlearningalgorithm.3.1.Computationalprincipleofmultilayerneuralnetworks
Tobuildanarti®cialneuralnetworktoperformsometask,onemust®rstdecidewhatkindofANNistobechosen,howmanyunitsaretobeusedandwhatkindsofunitsareappropriate.Boththestructureofthenetworkandtheconnectivityofitsprocessorhaveasigni®cantin¯uenceonitsoverallbehavior.
Duetotheattractivefeaturesmentionedpreviously,amultilayerneuralnetworkwithinput,outputandinsertedhiddenlayersofneurons,whichisshowninFig.5,isadoptedinthestudy.
Multilayerneuralnetworkscanrepresentanyfunc-tion,whengivenenoughunits[5].Thistypeofarti®-cialneuralnetworkisconsideredafully-connectednetwork,ofwhicheachinputwillin¯uencealloutputelements.Themultilayerneuralnetworkcanaordabroadfoundationonwhichthenumberoflayersandneuronsineachlayercanbeoptionallyalteredaccord-ingtoagivenproblem.Theneuronnumbersininput
X.Caoetal./ComputersandStructures69(1998)63±7867
Fig.4.Patternsusedtotrainarti®cialneuralnetworks.(Verticalcorrdinates-leftaxis:concentratedload,N;rightaxis:strain,Â10À5.Horizontalcoordinate-coordinatesofactingpointsofloadsandmeasuringpointsofstrains,M).
andoutputlayersareusuallydecidedaccordingtoaninvestigatedaim.Thenumbersofhiddenlayersandneuronsineachhiddenlayeraredeterminedaftercon-sideringthetypeofproblemandthecomputationalspeedandaccuracy,whichwillbestudiedduringthetrainingoftheANNanddiscussedlater.
Eachneuronisafundamentalcomputationalel-ement.Fig.6showstwotypicalneuronsselectedfrom
68X.Caoetal./ComputersandStructures69(1998)63±78
Fig.5.Schematicdiagramofmultilayerneuralnetwork.
inputlayersandhidden,oroutput,layersofamulti-layerneuralnetwork.Fortheinputlayer,itsneuronsoutputtheincomingsignalxidirectly:yixi
1
wherethesubscriptidenotestheithneuronintheinputlayer.
Forthehiddenoroutputlayer,eachneuronformsaweightedsum
ni1
ijdenotesthatthewijisweightonthelinkfromuniti
inthepreviouslayertounitjintheJthlayer(currentlayer).Hiddenlayersdonotinteractwiththeexternalenvironmentandsimplyoutputorinputinformationtoorfromtheneuronswithinthesystem.Theoutputofanindividualneuronmaythenbecometheinputtotheotherneuronsormaysimplybeoneoftheoutputsofthenetwork.Theformerbelongstotheneuronsinhiddenlayersandthelatterbelongstotheneuronsintheoutputlayer.
DierentmodelsareobtainedbyusingdierentmathematicalfunctionsofF.Threecommonchoicesarethestep,sign,andsigmoidfunctions[5].Thechoiceofactivationfunctionmaysigni®cantlyin¯u-encetheapplicabilityofatrainingalgorithm.Inthisresearch,thesigmoidfunctiongivenbyFUj
1
1EXPÀUjaT4
wijxi
ofninputsfrompreviouslayer,andabiasyjisadded.Uj
ni1
wijxiyji1Y2FFFYnX2
Thenthesumbecomestheinputsignaloftheproces-singunit.Computationalelements(units)processandpasstheresultsthroughanactivationfunctionFtoobtainitsoutputyjasfollows:
23n
yjFUjYFUjFi1Y2YFFFYnXwijxiyj
i1
3
Thecoecientwijistermedtheweightedcoecientandthecoecientyjistermedthebias.Thesubscript
isadoptedasanactivationfunctionforthecalculationofunits.ThesigmoidfunctionhastheconvenientpropertythatthederivativeF'(Uj)=F(Uj)[1ÀF(Uj)]iseasytoformsothatlittleextracalculationisneededto®ndF'(Uj).
Theactivationfunctionistheonlysourceofintro-ducingnonlinearitiesintotheinput-outputrelation.TheapplicationofthesigmoidfunctiontothelinearsummationUjproducesanoutputthatisanonlinearfunctionoftheinputvariables.Itcanbeshownthat,intheabsenceofthenonlinearactivationfunctions,amultilayerlinearnetworkcanbereducedtoanequiv-alentsinglelayernetwork.Thisagainunderscorestheimportanceofthenonlinearactivationfunctionbuiltintothesingleneuron.
Inthetheoryofprobability,thesigmoidfunctionrepresentsthe®reprobabilityofaunit.Instatistics,Tcorrespondstotemperature,buthereTisabiaspar-ameterusedtomodulatetheunitoutput.Fig.7showsthattheoutputfeatureofthesigmoidfunctionwillvarywiththevalueofT.
Theprincipaladvantageofthisfunctionisitsabilitytohandlebothlargeandsmallinputsignals[4].Theslopeofthisfunctionisrepresentativeoftheavailable
Fig.6.Twotypicalneurons.
X.Caoetal./ComputersandStructures69(1998)63±7869
Fig.7.SigmoidfunctionF(Uj)=1/[1+EXP(ÀUj/T)].
gain.Forbothlargepositiveandnegativevaluesoftheinputsignal,thegainisquitesmallandforthein-termediatevaluesoftheinputsignal,thegainis®nite.Hence,anappropriatelevelofgainisobtainedforawiderangeofinputsignals.
Anotherneuronparameteristhebiasyjortheosetinputintotheunit.Althoughthiscouldbeachievedsimplybyaddingaconstantinputwithanappropriateweight,oftenthebiasisconsideredseparately.Biasesmaybeused,forexample,toselectivelyinhibittheac-tivityofcertainneurons[2].Thebiasvariableaectsthedegreeofnonlinearitybyshiftingtheinputawayfromthelinearregionofthesigmoidfunction.3.2.LearningalgorithmformultilayerneuralnetworkTheneuralnetworkmustbetrainedtorecognizetheknownpatternsandtoextrapolateexactresultsfromtheseknownpatternswhennewinformationisinput.Formultilayerneuralnetworks,thetrainingisper-formedbycontinuallyupdatingbiasandsynapseweights.Thetrainingprocessisdirectedtowardsmini-mizingthemeansquarederrorbetweenthedesiredandtheactualoutputsoftheneuronsintheoutputlayer.Thetrainingoftheneuralnetworkendsandthecon®gurationiscon®rmedassoonaseacherroroftheunitsintheoutputlayerreachesanacceptablelevel.Althoughmanykindsofalgorithmsontrainingneuralnetworkshavebeenproposedandutilizedsofar[4,6-9],theErrorBackPropagationalgorithm,whichwasproposedbyRumelhartetalin1986[10]andisabbreviatedastheEBPalgorithminthispaper,isverybroadlyadopted[11,12].TheEBPalgorithmisaniterativegradientalgorithmdesignedtominimizethemeansquarederrorbetweentheactualandthedesiredoutput[6],whichfocusesonquicklyreducingtheerrors.InRef.[8,9]and[13,14],theBackpropagationNeuralNetworks(BNNs)areverypreciselydescribed.
BasedontheEBPalgorithm,manyotherecientlearningmethodsarederived[15±18].InRef.[15],trainingisperformedbytheEBPalgorithmusingamodi®edversion.Ahyperbolictangentfunctionwasusedasthenodenonlinearity.InRef.[16],anintuitiveandstraightforwardmodi®cationofEBPisintroduced.Thepaperdescribesthatifexpectedvaluesofsourceunitsareusedforupdatingweights,theEBPalgorithmconvergessigni®cantlyfaster.Amodi®edQuickpropalgorithmissuggestedinRef.[17],whichrequiresonlyonemajorparameter(thelearningrate).InRef.[18],anewEBPalgorithmwithcoupledneuronsisproposed.Theneuroniscalledasaturatinglinearcoupledneur-on.ComparingitwiththeconventionalEBPalgor-ithm,theproposedrulehasahighconvergencerateinlearning.
Inthisstudy,anImprovedErrorBackPropagationalgorithmisadoptedtotrainANNs.SinceBackpropagationNeuralNetworks(BNNs)arewell-knownanddescribedpreciselyinRef.[8,9]and[13,14],andtheirapplicationinstructuralmechanicsisgiveninRef.[4],detaileddescriptionsonEBPsareomittedhere.Instead,abriefintroductionoftheIEBPalgor-ithmisgiven.
Takingthekthneuronintheoutputlayerasanexample(Fig.5),itserrorcanbeexpressedasekDkÀyk
5
whereDkandykaredesiredandactualoutputsofneuronkrespectively.MeansquareerrorEkisde®nedasanerrorfunctionandisexpressedas1Eke2Y
2k
1
EkDkÀyk2X
26
Itshouldbenotedthattheerrorfunctioncanbegivenonlyforneuronsintheoutputlayer.Fortheneuronsinotherlayers,suchacomparisonisimpossible.Thatiswhytheweightedcoecientsandbiasesmustbe
70X.Caoetal./ComputersandStructures69(1998)63±78
adjustedandworkingbystartingbacktofromthosethenodesintheoutputlayermulti-dimensionalTheerrorfunctionEinhiddenlayers.
kcanbeconsideredtobeacoecientsItswandquadraticbiasesyfunctionofconnectionjkkintheparameterspace.totaldimensionalHence,numberofnumber,adjustablehereweightsexpressedandbyM,istheMsometimes-dimensionaltheerroropposedmaynotspace.surfaceisanonlinearsurfacenodebiases.inanbetheThedesiredminimumglobalofminimumEk,whichaswherethetofollowingalocalequationsminimum,hold:appearsatthepointdEk
dwjk07
dEk
dyk
0X8
Itworksisobviousthatthelearningalgorithmofneuralwisyasubstantialprocessofgraduallyadaptingnet-jkandkaccordingtokyields:
thDe®ningneuron[inDEqs.(7)and(8).
ktheÀykoutput]yk[1Àylayerk]/TandasandenotingerrortermitusingofthedkdkDkÀykyk1Àyk1
TX
9
Bymeanusingactualsquaredagradientdierencedescentbetweentechniquetominimizethebiasesnetworkpressions:
areadjustedoutputs,respectivelytheweightedthedesiredandbythecoecientsfollowingandex-wjkt1wjktZdkxj10ykt1yktgdk
11
whereandwgaretdenotestermedthelearninglearningratescycle.ofweightedThecoecientscoecientsZexpressedjkandbiasesgorithm.
byEqs.ykrespectively.(10)and(11)TheistermedlearningthealgorithmEBPal-momentumThetrainingtermsalgorithmmaybeimprovedbyaddingaDwjktÀ1awjktÀ112bDyktÀ1byktÀyktÀ113
intoEqs.(10)and(11),then
wjkt1wjktZdkxjawjktÀwjktÀ114ykt1yktgdkbyktÀyktÀ1
15TheislearningalgorithmexpressedbyEqs.(14)and(15)ithm,calledwhichtheImprovedisabbreviatedErrorasBackthePropagationIEBPalgorithmalgor-in
thistumpaper.Thecoecientsaandbaretermedmomen-smoothedThecoecientsvariancesrespectivelyofweightsfortheandweightsandbiases.Thebymeansofaddingthemomentumbiasescanterms.beithmspeedlearningareincreased.ofconvergenceInandstabilityofthealgor-guidefromconvergingaddition,ataitlocalmayhelptoprevent(Forconvergencetheneurontowardsjtheglobalone.
optimumandkd,inhiddenlayerJ,itserrortermd(jd)canbedeterminedusingtheerrortermofneuronk)intheoutputlayerorneighboringhiddenlayerifkisalreadygained.djhj1Àhj
Kdkwjk
1
k1
T16
wherehjdenotestheoutputtheThecomputerNNcodeofusedtheforjthneuron.
computationsFORTRANresearchprogrammecomputeriswrittenlanguage.bytheauthorsusinginbrie¯yillustratedforANNinFig.learningThe8.
and¯ow-chartcomputationsoftheisFig.8.Flow-chartforarti®cialneuralnetworklearning.
X.Caoetal./ComputersandStructures69(1998)63±7871
4.TrainingANNsandDiscussiononResults4.1.Trainingarti®cialneuralnetworks
eachAinputmultilayerandoutputneurallayernetworkisadoptedwith11neuronsincalSevenpatterns,calculation,setsoftraininginthisstudy.loadsinwhichshownpatternsobtainedbytheoreti-strainsinareFig.used4,areasusedastrainingexpressedTrainingasteachingANNssignals.
inputsignalsandisperformedbytheIEBPtationalAsdescribedbyEqs.previously,(14)and(15).
algorithmeachunitisaandBecausepasseselement[0,1]thethethatformsaweightedsumofncompu-inputsoutputresultrangethroughoftheasigmoidsigmoidfunctionfunction.ismustasgivenbeshowntotothenormalizedinFig.7,outputsoftrainingpatternsnetworkintoasteachingaunitrangesignals.of[0,1]beforesionlessAstrainindicatedthenetworkItisdicultni®cantlyvariablesinwithoutsuchnormalization[3].andRef.scaling[19,20],ofintroductiontheirvaluesshouldofdimen-strainsonlyareimproveoriginallythedimensionlesseciencyofBNNs.sig-variablesTheinputtostraintheextendedbymultiplyingby105beforebeingandgivenarewhichizedisvaluesneuralnetworktoosmall.is[0HBut1.307237becauseinputstrainsÂthe10Àoriginal5],therangescaleofofTheintoaunitrangeof[0,1]asoutputaredatanotnormal-verteddimensionzationintodimensionlessofloadsisN(Newton),whichareisdone.con-utedTheintonetworkweightsnetworkaunitvariablesduringthenormali-andis®rstrangeof[0,1].
biasesinitializedwhenstartingwithrandomlytotraindistrib-neuralofsincenothingisknownabouttheoptimalsetemployedInweightsthisinvestigation,andbiases.
terns.asaconvergencetheallowancecriterionforerrorof0.05islayerisTheexpressedrelativeaserrorEPUofandeachiscomputedneuronintrainingbytheEq.outputpat-(17):EPU
jactualoutputÀdesiredoutputj
desiredoutputX
17
WhenalllearningtheEPUpatternssofallisreducedneuronstoin0.05,theoutputi.e.layerforEPUsEA0X05
18
itprocessisconsidereddenotesofANNthatlearningconvergenceends(Fig.isachievedandthetheSincethe8).InEq.(18),EAaniterativeallowancegradienterror.
algorithmachievedprocessnotstepofbytrainingANNsandconvergenceisemployedinisexpressedbereducedstep,byEq.toat(18),0.05.theinitialstage,allEPUscananInsteaderrorfunction,ofthecriterionEP,is
adoptedtrainingANNs,asareferencewhichisexpressedyardstickbyintheprocessofEP
PNUTSEPU19
1
1
EPoutputs(teachingisthesumoftheerrorsbetweenactualanddesired
layerneuronforalltrainingsignals)patterns.ofallHere,neuronsUT(intheoutputnetwork.numberPNInthisininvestigation,theoutputlayerSisof3andanSs)-layerdenotestheUT(S)neuralispatternsisthearenumberadoptedoflearningpatterns,only7training11.cycleThethenumber,trainingCprocessandPNis7.
,automaticallystopswhenthelearningallowanceerrorreachestoavoid10000wastingwithoutCPUtime.consideringThen,cesseswillareparametersrepeated.Inarethechangedprocess,andtheerrorlearningpro-ANNsgraduallytheisleadingdrop,whichimpliesthatthetrainingsumEPofisconsideredcriteriongiventowardsachievedbyEq.and(18)convergence.learningissatis®ed,Finally,ends.
convergencewhen4.1.1.convergence
EectofneuronnumbersinhiddenlayersonnetworkNospeci®cbertopology,guidelinesthenumberexistonoflayershowtochoosetheneuralofnodes[15].At®rst,anumberandofmultilayerthenum-tried.denButnetworkstheresultswithdidmorenotthanshow2hiddenlayerswereANNs.layers,reducedTherefore,thefastertheconvergencethattheofmoretraininghid-adopted.to1,i.e.theanumber3-layerofneuralhiddennetworklayerswasandidenti®edoutputEvenlayersthoughcanthebenumberdeterminedofunitsaccordinginthetoinputwasthenumberobject,theproblemofchoosingtherightunderstoodofhiddenunitsinadvanceisstillnotwell-theDuringgencenumberthe[5].
ofprocessnodesinofthetraininghiddenANNs,layerontheeectofThesummarizednumberofthewastrainingsuch:inTablechangedalgorithmwas®rstinvestigated.theconver-1.fromOther20parametersto1.Theresultsare®xedaretumThiscoecients:sigmoidtemperatures:theimpliesthata=b=1;Tlearning(2)=T(3)rates:=1;Z=momen-g=1.training.
convergencethearein¯uencesexcludedofatothertheinitialparametersstageonofestTable2showsthatthevalueoferrorsumisthelow-forwhencussions,othergiventheneuron4-11)suchaparameters.numberofthehiddenlayeris4networkisFordescribedconvenienceashavinginthea(11-dis-ANNThen,architecturetheeectsinoftheotherpaper.
parametersincludedintheNNwithtraininga(11-4-11)algorithmarchitectureonconvergencewereinvestigated.
fora3-layer72X.Caoetal./ComputersandStructures69(1998)63±78
Table1
EectofneuronnumbersinhiddenlayeronconvergenceNEPNEP
2014.4621014.748
1911.62491.673
1817.70188.194
1714.52577.801
168.02162.207
1511.92651.629
147.87440.843
137.87638.933
128.23922.767
1111.3101
13.287
Table2
EectofsigmoidtemperaturesonconvergenceT(2),T(3)0.6EP7.673
0.7
4.968
0.84.469
0.91.945
1.00.843
1.10.726
1.20.819
1.30.909
1.40.973
1.51.032
4.1.2.EectofsigmoidtemperaturesonconvergenceTheeectofsigmoidtemperaturesonconvergenceisshowninTable2andotherparametersare®xedas:momentumcoecients:a=b=1;learningrates:Z=g=1.
Table2showsthattheconvergenceisthefastestwhenT(2)=T(3)=1.1forothergivenconditions.Intheinvestigation,thesigmoidtemperaturesforneuronsinhiddenandoutputlayersarechangedinthesameincrementandaregiventhesamevalues.
4.1.3.EectofmomentumcoecientsonconvergenceTheeectofmomentumcoecientsaandboncon-vergenceisshowninFig.9,whichischangedinthesameincrement0.05.Otherparametersare®xedas:
allowanceerror:EA=0.05;sigmoidtemperatures:T(2)=T(3)=1.1;learningrates:Z=g=1.
ThecycleinFig.9denotesthenumberoftrainingcyclesinwhichthetrainingconvergesandtheerrorofeachneuronintheoutputlayerreachestheallowanceerror(EA)foralllearningpatterns.Thetraining,how-ever,iscompulsorilystoppedifitdoesnotconvergein10000cycles.
Theresultshowsthattheconvergenceisthefastestwhena=b=À0.20forothergivenconditions.4.1.4.Eectoflearningratesonconvergence
TheeectoflearningratesZandgoncon-vergenceisshowninFig.10andotherparametersarelimitedas:allowanceerror:EA=0.05;sigmoidtem-
Fig.9.Eectofmomentumcoecientsonconvergence.
X.Caoetal./ComputersandStructures69(1998)63±7873
Fig.10.Eectoflearningratesonconvergence.
peratures:T(2)=T(3)=1.1;momentumcoecients:a=b=À0.20.
ItisclearthatconvergenceisthefastestwhenZ=g=1.7forothergivenconditions.
4.1.5.Relationshipbetweenlearningcycleandallowanceerror
Finally,therelationbetweenthenumberoflearningcycleandtheallowanceerrorwasinvestigated.Itisapparentthatthelowertheallowanceerror,thelargerthenumberoflearningcycles.TheresultsareshowninFig.11andotherparametersaregivenas:sigmoidtemperatures:T(2)=T(3)=1.1;momentumcoe-cients:a=b=À0.20;learningrates:Z=g=1.7.FromFig.11,itcanbeobservedthatwhentheallowanceerrorislower,thenumberoflearningcyclesneededforconvergencebecomesextremelylarge.4.2.Resultsanddiscussion
Inthisstudy,theeectsoftheneuronnumberinahiddenlayer,sigmoidtemperature,learningpar-ameters,includingmomentumcoecientsandlearningratesontheconvergenceofthelearningalgorithmareinvestigatedbyalocalsearchmethod.Theparametersarechangedincertainrangesstepbysteptotryto®ndabettercombinationoftheseparameterstoattainconvergencefaster.Intheseekingprocess,theweightsandbiasesareconstantlyadjusted.ThevalueofatypeofparameterthatmakestheerrorsumEPorthenum-beroftrainingcyclesthelowestinthesearchedrange,i.e.,convergencerelativelyfaster,is®xedandgiventothetypeofparameter.Then,thenexttypeofpar-ameterisinvestigated.
Thelearningparametersaregraduallydeterminedintheprocess.Atypeofparameterinvestigatedearliermayeectthedeterminationoftheparametersinvesti-gatedafterwards.Butthelatterdoesn'teectthefor-mer.Thesearchedrangeisnotsolargebecausetheconcernisfocusedon®ndingabettercombinationoftheseparameterstomaketrainingconvergencequicker,thentoobtaindesiredidenti®edresultswithatrainedANN.
Intheinvestigationintotheeectofmomentumcoecients,aandb,onconvergence,thelearningrates,Zandg,aregiven1,whichmeansthelatterdon'tin¯uencethelearningatthisstage.Then,themomentumcoecients,aandb,arechangedinthesameincrementaroundvalue1stepbystep.However,thefartherthevaluesofaandbdeviatefromÀ0.20,themorecyclesareneededtoreachconvergenceandthelargerthesumoferrorEPbecomes(Fig.9).ItshouldbenotedwhenaandbarelessthanÀ0.15,thereductionofcyclenumberandtheEPissmoother.Then,whengivenhighervalue,ascillatorybehavioroccurs.
InRef.[21],itisindicatedthatthevalueofmomen-tumcoecientshouldbetakenaV0.9.EventhoughinFig.9,therangeinwhichthemomentumcoecientschangeis[À0.35H0.10],duringthetrainingprocess,theyarealwayschangedinalargerrange,inbiggerincrementaroundvalue1,anda=b=0.9werealso
74X.Caoetal./ComputersandStructures69(1998)63±78
.rorreecnawolladnaelcycgninraelneewtebnoitaleR.11.giFinvestigatedresult,cyclesvalueofthetrainingtrainingsincethewhendidvalueanotwasnear1.But,asa=bconverge=0.9.InevenRef.in[3],10000ZIntheofmomentuminvestigationfactorintoisthegiveneectastheof0.001.
andandÀmomentumg,onconvergence,learningrates,coecients,sigmoidatemperaturesare1.1in¯uence0.20,whichmeansthatthetwoandkindsb,areofparametersgivenasfasterObservingtheconvergenceandtheFig.training.
needed10,itisnotedthattrainingconvergesrates,However,Zanddecreasesnumbercyclewheng,whentheoflearningvalueofcycleslearningfortheishigher,learninginratesthearerangefurtherofrisen,[1.0±1.7].pointnumbertrainingwheretrainingjumpsfromdoesn'ttheminimumtheconvergetoadivergencepapersThecycles.valuesThisofbehaviorlearningisevenin10000ratesworthgivennoting.
in[3,11,15,21]arenotashighastheonesinothergiven0.002.ourasymptoticInpaper.Ref.In[11],Ref.it[3],istrainingratesaregivenasithmsprobablywithconstanttheoryoflearningneuralconsideredthatageneralratesnetworklearningalgor-ratesnotareneverwill.Itisindicateddoesthatifnottheexistlearningandvestigationbeguaranteedkeptconstant,ingeneral.meaningfulTheresultsconvergencefromourcan-in-ingInnumberrates.Ref.[15],supportTheeectinterestingthisviewpoint.
resultsarereportedonlearn-wasofiterationsofandtheonlearningthespeedrateZonthetotal0.01,examined.will0.03,0.04,FivevaluesofZweretested:ofconvergenceZ=0.005,reducegiveaslower0.10.convergenceItwasobservedrate,andthataasmallerZsmallertheofZreduceserrorintheanoscillatorymanner,highwhereasZwillaobservedZreducestheerrorerrorverysmoothly.fast.TheThetrendhighcanvaluebegation.
fromtheresultsobtainedinourinvesti-Ref.Anexplanationforsuchbehaviorisgivenbydimensionalthe[15].errorItisfunctionconsideredisthattheerrorsurfaceshapedintobiases.thetotalspace.Theadimensionalnonlinearsurfacenumberinaismulti-equalandThenumbererrorsurfaceofthecontainsadjustablemanyweightslocalandminimanodeEBPitthealgorithmispreciselyeventuallyoneofthoseconvergeslocalminimato.thattheonevaluenationlocalofminimumZistoohigh,thealgorithmbouncesHowever,fromifingInRef.isreasonable.
toanother.Wethinktheexpla-[21],itisconsideredthatTherateshouldbetakenfromtherange:thevalueZ=(0.0,oflearn-0.7].possiblerangethattowascompare.notinvestigatedAlso,itinthisstudyandisim-takenlearningHowever,intheitcanrangewillconvergewhencannotlearningbeguaranteedratesarebeestimatedfortheapplicationthatthevalueinthisoflearning
paper.X.Caoetal./ComputersandStructures69(1998)63±7875
rates,whichmaketheconvergencethefastest,prob-ablyisnotinthisrangefortheapplicationreportedinthepaper.
Accordingtoouropinion,thereareanumberoffactorsthatin¯uenceANNtraininganditsconver-gence,whichincludestheANNarchitecture,trainingTable3
Errorsoftheidenti®edresultsRelativeerror<0.08r0.08
Neuronnumber633
Ratiooftotal95%5%
patterns,on.exceptInthetrainingtrainingalgorithm,algorithmtrainingadoptedprocedureandsoingforthesigmoidtemperature,thereintheareresearch,4learn-learningparameters,ameterscallyonrates,convergenceZi.e.,andmomentumg.Thecoecients,aandb,shouldeectbeofconsideredthelearningsyntheti-par-procedure.butindependently,learningofrates,TheZreasonandg,isthatespeciallyhigherthemayselectedforthistrainingbevalueoftheviouslymomentumcoecients,aandb,whichthatwerethevaluepre-maylearninghelpdetermined,topayattentionisconsiderablytothecombinationlow.Therefore,oftheitselyTheconvergenceparameters.
ofneuralnetworklearningisclo-algorithmrelatedTheandtothetheneuronparametersincludedinthelearningdivergencelearningwilltakelongernumbertimeintheorevenhiddenlayer.suitable.
ifthecombinationoftheparametersleadisnottonationAlthoughitpossibleoftheparametersisdicultbytothe®ndtheoptimalcombi-thatscopesoftheparameters,localitsearchcanbemethodsupposedinuniquethesimilarandbestmumtoseekingthecombinationcombinationoftheoptimalcanthetrainingparametersispointbefoundforabygivenaprocessthelongerconvergenceproblem.Asadoptedtimeto®ndwillthebeoptimalcombinationisused,opti-it.theWithfastest.theHowever,ittakesasatisfactoryinthestudy,abettercombination,localsearchwhichmethodisisgainedinenougharelativelyforsolvingshorterthetime.
problemgivenhere,appropriateThereareAlthoughnumbersnorigorousofhiddenmethodslayersinselectingthetopicoptimalandseveraltherestudieshavebeenperformedandonunits.thisrobustnetworkaresizes,alsotrialsomeandempiricalerrorrulesto®ndhiddenmethodinpracticalcases[3].areThestillnumberthemostofblemseveraldependent.layersandHowever,nodesinnumericalsuchlayersisagainpro-berbeminimizedrepresentativeforproblemssuggestsexperiencethatthisnum-withlayersItisnotlikelythatcomputationalitisbettertoeciency.
havemorestudy.andthisInaddition,neuronsinaccordinghiddenlayersaccordinghiddentothisworkinvestigation,itisreasonabletotoourdetermineexperiencethefromnet-containedarchitecturesetinthelearning®rst,thenalgorithm.toselectOnotherparametersgenceoflearningthecontrary,aresultinfasterparameters,thatmaketrainingconver-divergenceforoneforarchitectureanotherarchitectureofANN,ofprobablyANN.
selectedNeedlessgencetrainingtosay,patternsbothstronglyqualityandquantityofcapability.
ofatrainingprocessaswellasin¯uenceageneralizationconver-areInthetrainingprocess,weights(wjk)andbiases(ytheconstantlyoutputactualandadjustedtominimizetheerrorbetweenj)theworkbestlayer.combinationTherethedesiredareoutputsoftheunitsintheofalsoweightsseveralandstudiesbiasesonand®ndingduringIntopologynet-thepaper,simultaneously.
thevariationsofweightsandbiasesbeofreportedthetrainingthatofANNarenotshown.Itshouldbiasesinappropriateatrandomthebeginninginitialofthetraining,asetdiscoveringalwaysresultedinthetrainingvaluesdiverging.ofweightsBeforeandsomewastedmistakesthisagain.alotofinvolvedreason,timecheckinginwethesuspectedcomputerthattherewerethecodeNNagaincodeandandbiasesThisthein¯uencesshowsthethattrainingthecombinationofweightsand®xedtrainingwasover,theweightsprocessandstrongly.biasesWhenwereandantoANNthevalueswasdetermined.obtainedbyAsthearesultIEBPofalgorithmtraining
Fig.12.Neuralnetworkadoptedtoidentifyloads.
76X.Caoetal./ComputersandStructures69(1998)63±78
ANN,thearchitectureoftheANNwith4neuronsinahidden-layer,T(2)=T(3)=1.1,a=b=À0.20andZ=g=1.7wasformedandthelearningofANNwasaccomplished.Therelativeerrorsofeachneuronintheoutputlayerwasreducedto0.05in4151cyclesoftraining.The®nalcon®gurationofthearti®cialneuralnetworkusedtoidentifyloadsisshowninFig.12.Theprocessofidentifyingloadsissmoothlyandide-allycompletedandsixsetsofoutputsareobtainedassoonassixsetsofstraindataaregivenintothetrained
Fig.13.Comparingtheidenti®edresultswiththeoreticalvalues.(Verticalcoordinates-leftaxis:concentratedload,N;rightaxis:strain,Â10À5.Horizontalcoordinates-coordinatesofactingpointsofloadsandmeasuringpointsofstrains,M).
X.Caoetal./ComputersandStructures69(1998)63±7877
neuralFig.networkinorder.TheresultsareshowninwhichThe13.
beam.causetheoreticalthesamevaluesstrainexpressvaluesaccurateloadvalueswhichWith6setsoflearningpatterns,whenappliedintotheobtained.11values,theByoutputsresultscomparingarecontained,66outputseachareofaregiventheseinTableoutputs3.
withtheoretical5.SummaryandConclusions
beam.Anaircraftwingissimpli®edtoacantileveredwingAnareNonuniformapproximateddistributedbyaloadsactingontheadoptedImprovedsetofconcentratedloads.oftoErrorBackPropagationalgorithmislishedlearningtraintothroughdatamultilayertheoreticalandsixsetsneuralnetworks.Sevensetscomputation,ofcheckdatawhichareareestab-usedresults.
trainANNandchecktheaccuracyoftheidenti®edingThethealgorithmeectofistheinvestigated.parametersAcontainedinthelearn-cedure,learningparametersisfoundbetterbyalocalcombinationsearchof4151outputcycles.whichlayerThemakesthetrainingofANNconvergepro-inisreducedrelativetoerrorsoftheneuronsinthetoWhenANN,thethestrainsfromallowancesixcheckerror.
patternsaregiventhetheunitsarti®cialintheneuralinputlayerofthewell-trainedsmoothlyloads.Theprocessnetworkofloadimmediatelyidenti®cationoutputismeetwithaccuracyandideallydemandscompleted.bycomparingTheidenti®edtheseresultsarti®cialtheoreticalinneuralnetworksvalues.Thecanpaperoutputsbedemonstratesthatanloadcuracyextremelyidenti®cation.Thewell±trainedusedveryANNeectivelyrevealsmodel.
inthefastloadconvergenceidenti®cationandaforhighadegreecantileveredofac-vergenceThereareseveralkeyfactorsthatin¯uencetecture,ofprocedure,trainingANNlearning,thecon-patterns,whichincludeANNarchi-toTheconvergenceandsoon.
trainingalgorithmsandofANNlearningeectparametersincludedinthelearningisalgorithm.closelyrelatedTheshouldoftakebetheconsideredlearningsynthetically.parametersTheonlearningconvergencetheparameterslongertimeorevendivergeifthecombinationwillofANNItisreasonableisnottosuitable.
determinethearchitectureoftheameterslearning®rst,thenalgorithm.toselectOnthetheparameterscontainedinarchitecturethatmaketrainingconvergencecontrary,fasterasetforofpar-anotherarchitectureofANNofprobablyANN.
resultsindivergenceoneforgationThelocallearningmaysearchprocedureadoptedintheinvesti-parametershelpto®ndinarelativelyasuitableshortercombinationtime.oftheAcknowledgements
sionsTheopportunitywith®rstauthorDrofthankingR.hasIsida.everbene®tedfromthediscus-him.ShewouldliketotakethisReferences
[1]TangVerticalJ,CaoX,MitsuiY.AStudyPICAST'95TailLoadsofanAircraftbyonDeterminingthe
Conference(ProceedingsStrainMethod.In:onofSecondPaci®cInternational[2]Australia,AerospaceScience&Technology).Schalko1995;159±62.
McGRAW-HILLRJ.Arti®cialCompanies,NeuralInc.,Network.Singapore,The
[3]1997;ISBNYoshimura0-07-1155-6.
RegularizationS,BasedIdenti®cation.InverseAnalysesbyMatsudaTransformationA,YagawaG.New
InternationalandItsJournalApplicationforNeuraloftoNumericalStructureNetwork[4]MethodsHajelaEngineering1996;39:3953±68.
ModelsinP,StructuralBerkeL.AnalysisNeurobiologicalandComputational
[5]StructuresRussellApproach.SJ,1991;41(4):657±67.
Design.Computers&NorvigP.Arti®cialIntelligence,AModern
[6]1995;ISBNLippmann0-13-360124-2.
Prentice-HallInternational,Inc.,USA,[7]NeuralAsouH.Nets.RP.AnIntroductiontoComputingwith
ProcessingIEEEASSPInformationMagazine,with1987:4±22.
[8]IndustryHertz[9]ofHecht-NielsenNeuralJ,KroghBooksPress,Tokyo,1992.
NeuralNetwork.
Computation.A,PalmerAddisonR.IntroductionWesley,1991.
totheTheory
[10]1991.
R.Neurocomputing.AddisonWesley,
RumelhartRepresentationsDE,byHintonBack-propagatingGE,WilliamsErrors.RJ.Learning
Nature[11]1986;323(9):533±6.
KuanAlgorithmsC,HornikK.Convergence[12]TransactionswithKatayamaonNeuralConstantLearningRates.ofLearning
IEEEofJSMENeuralDynamicsNetworkT,SugiyamaNetworksandtoPreliminaryY,IshidaR,1991;2(2):484±8.
DesignConference'92.StructuralCaoX.Application
Design.In:[13]1992;688±.
Japan,ZuradaJ.IntroductiontoArti®cialNeuralSystems.
[14]WestFaussetPubl.L.Co.,FundamentalsUSA,1992.
ofNeuralNetworks.Prentia
[15]Hall,Masri1994.
ofNonlinearSF,ChassiakosDynamicAG,CaugheyTK.Identi®cation
[16]JournalSamadofAppliedMechanicsSystems1993;60:123±33.
UsingNeuralNetworks.Values.NeuralT.BackNetworksPropagation1991;4:615±618.
withExpectedSource
78X.Caoetal./ComputersandStructures69(1998)63±78
[19]VanlucheneRD,SunR.MicrocomputersinCivil
Engineering1990;5:207±15.
[20]GunaratnamDJ,GeroJS.MicrocomputersinCivil
Engineering1994;9:97±108.
[21]HegazyTetal.Microcomp.inCivilEng.1994;9:145±59.
[17]VeitchAC,HolmesG.AModi®edQuickprop
Algorithm.NeuralComputation1991;3:310±1.
[18]FukumiM,OmatuS.ANewBack-Propagation
AlgorithmwithCoupledNeuron.IEEETransactionsonNeuralNetworks1991;2(5):535±8.
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- sarr.cn 版权所有 赣ICP备2024042794号-1
违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务