DWARFGLIESE229B
T.R.Geballe
arXiv:astro-ph/9606056v1 10 Jun 1996JointAstronomyCentre,660N.A’ohokuPl.,Hilo,HI96720
S.R.Kulkarni
PalomarObservatory105-24,CaliforniaInstituteofTechnology,Pasadena,CA91125
CharlesE.Woodward1,2
UniversityofWyoming,DepartmentofPhysics&Astronomy,Laramie,WY82071-3905
G.C.Sloan1
NASAAmesResearchCenter,MS245-6,MoffettField,CA94035-1000
1
VisitingAstronomer,UnitedKingdomInfraredTelescope.NSFPresidentialFacultyFellow.
2
Received
–2–ABSTRACT
Amediumresolution1.0−2.5µmspectrumofthebrowndwarf,Gliese229BhasbeenobtainedusingCGS4onUKIRT.Inadditiontothebroadspectralstructureseeninearlierlowresolutionobservations,thenewspectrumrevealsalargenumberofabsorptionlines,manyofwhichcanbeidentifiedwithwatervapor.Waterandmethanearebothshowntobestrongabsorbersinthenear-infraredspectrumoftheobject.SeveralspectralfeaturesinGl229Bthatareattributabletomethanematchonesseeninreflectioninthegiantouterplanetsand,inparticular,Titan.
Subjectheadings:infrared:general—infrared:stars—infrared:linesandbands—stars:individual(Gl229B)—stars:lowmass,browndwarfs
–3–
1.
INTRODUCTION
Recently,Nakajimaetal.(1995)reportedthefirstdetectionofacoolbrowndwarf,Gliese229B(hereafterGl229B),apropermotioncompanionofGliese229A.Oppenheimeretal.(1995)obtainedalowresolution(λ/∆λ≈150)near-infrared(1−2.5µm)spectrumofGl229Bandfoundanumberofstrongabsorptionbands.SimilarabsorptionbandsareseeninthespectrumofJupiterandareattributedtomethane.Methaneisnotseeninstars.Tsuji,Ohnaka&Aoki(1995)concludethatmethanewillbeseenonlyinobjectscoolerthanabout1800K,lowerthantheeffectivetemperaturesofeventheleastmassivestars(Burrows&Liebert1993).Fromthemeasuredbroad-bandspectrumofGl229BandassumingaradiusequaltothatofJupiter,Matthewsetal.(1996)inferTeff=900Kandabolometricluminosityof6.4×10−6L⊙.ThelowluminosityandthepresenceofmethaneinthephotosphererequirethatGl229Bisacoolbrowndwarf.
Herewepresentanew1.0−2.5µmspectrumofGl229Bwithsignificantlyhigherresolutionandsignal-to-noiseratiothantheoriginalspectrumpresentedbyOppenheimeretal.(1995).ThenewdataprovideaconsiderablymoredetailedviewofGl229B.WecompareourspectrumtospectraoftheJovianplanetsandTitanwhichareknowntoshowstrongabsorptionfeaturesduetomethaneinthenear-infrared.
2.OBSERVATIONSANDDATAREDUCTION
WeobtainedspectraofGl229Binthe0.99−2.52µmintervalattheUnitedKingdom3.8mInfraredTelescope(UKIRT)on1995October28-29UTandDecember12-13UT,usingthefacilityspectrometerCGS4(Mountainetal.1990).The75l/mmgratingandthe150mmfocallengthcameraopticsinCGS4imagedaslit90′′longontoa256×256InSbarray.Eachpixelspanned1′′.23,andtheslitwasonepixelwide.Table1providesdetailsof
–4–
theobservations.TheresolutionofCGS4wasapproximately390×λ(µm)infirstorderand780×λ(µm)insecondorder.Tocalibratethespectra,weobservedHR1849(A0V,V=5.55)eachnightjustbeforeobservingGl229B.
Gl229Bisabout8′′fromGl229A.IntheJ,H,andKbandsGl229AoutshinesGl229Bbyapproximately10magnitudes.AtUKIRTthehaloofdiffractedandscatteredlightfromGl229AcontributedalargeamountofradiationtothearrayrowscontainingtheGl229Bspectrum.Inordertominimizethedifficultiesofremovingthisbackground,weobservedwiththeslitofCGS4perpendiculartothelinejoiningthetwosourcesontheskyandobtainedalternatespectraofGl229Bbynoddingthetelescope10rowsalongtheslit.Subtractingthesealternatespectralimagesremovedmuchofthehalo,allowingGl229Btobedetectedclearlyatnearlyallwavelengths,typicallyatgreaterstrengththantheresidualhalofromtheprimary.WeextractedthespectrumofGl229Busingstandardinfraredreductionprocedurestocorrectforcurvatureofthespectraandtoremoveresidualbackground.SpectraofHR1849wereutilizedtocorrectforatmosphericandinstrumentalabsorption,aftereditingthemtoremoveatomichydrogenabsorptionlines(withtheexceptionofPaαat1.875µm).
Figure1presentsthecompletespectrumofGl229Bfrom0.99to2.52µm(anumericalfileofthisspectrumisavailablefromtheauthorsuponrequest).AmoreexpandedversionofthespectrumisprovidedinFig.2.Toproducethespectrum,weslightlysmoothedandrebinnedtheobservedspectrainstepsof0.0005µmforthesecondordersegmentsand0.0010µmforthefirstordersegments.Thesmoothinglowersthespectralresolvingpowerby≈10%fromtheactualinstrumentalresolutioncitedabove.Intheregionofoverlapbetweenthetwoorders,wechosetousethefirstorderspectrumbeyond1.585µm.Wescaledtheindividualsegments(byfactorsrangingfrom0.7to1.2)tomatchthespectrainoverlappingsectionsandat1.585µm.Theaveragescalingfactorwasunity,butwe
–5–
scaledthefinalspectrumbyafactorof0.76tomoreaccuratelymatch(towithinabout0.1mag)therecentPalomarphotometryofGl229B(J=14.2,H=14.3,Ks=14.3,K=14.4)asreportedbyMatthewsetal.(1996a).
ThenoiseintheCGS4spectrumvariesconsiderablywithwavelength,asillustratedinFig.2,duetolargevariationsinatmospherictransmissionandinthebackground(causedbyboththermalandOHemissions).Inparticular,inthespectralregionsdominatedbystrongtelluricabsorptionbands(1.12−1.14µm,1.36−1.42µm,1.81−1.93µm,and2.48−2.52µm),apparentspectralfeaturesmaynotbereal.Inthesespectralregionsthedataprobablyareonlyusefulforestimatingtheaveragefluxlevel.
3.DESCRIPTIONOFTHEINFRAREDSPECTRUM
ThenewspectrumofGl229BisconsistentwiththelowerresolutionspectrumofOppenheimeretal.(1995).However,thelatterspectrumwasincorrectlynormalized,asnotedbyMatthewsetal.(1996a).Matthewsetal.(1996b)presentarevisedspectrumwiththepropernormalization,withwhichtheCGS4spectrumagreeswell.
Twonewresultsareimmediatelyapparentfromthenewspectrum.First,emissionisseenacrosstheentireIRbandfrom1.0to2.5µm.Specifically,emissionisdetectedthroughthewavelengthintervalsofstrongtelluricH2Oabsorption(seediscussionabove)andintherange2.2−2.5µmincludinganotableriseinfluxatwavelengthslongwardof2.4µm.ThedataofOppenheimeretal.(1995)wererestrictedtotheusualnear-infraredwindows(Z,J,H,K)andfurthermorewerenoisyintherange2.2−2.5µm.Weemphasizethat,withthepossibleexceptionofthewavelengthinterval1.36−1.40µm,wherethedetectionismarginal,theemissiondetectedisfromGl229BandisnotcontaminationbyGl229A;crosscutsthroughthedifferencedspectralimagesinthesewavelengthintervals
–6–
showlocalmaximaintherowsofthearraycorrespondingtothelocationofGl229B.Second,numerousnarrowlinesareseen(seeFig.2).Theseappearinregionsofhighemissionandonalloftheabsorptionedgeswiththeexceptionoftheverysteepedgeat1.6µm.Broaderfeaturesoccurinthe1.6−1.9µmabsorptiontroughatabout1.63,1.67,1.71,and1.80µm,andat2.17,and2.20µm.MostofthebroadfeatureswereseeninthespectrumofOppenheimeretal.(1995),albeitatlowerresolution.
4.
4.1.
DISCUSSION
Methane:comparisonwithSolarSystemobjects
WehavecomparedthenewspectrumofGl229Btothesolarreflectancespectraofthreeofthegiantgaseousplanets(Jupiter,Saturn,andUranus)andTitan,usingthedataofFink&Larson(1979),andrecentCGS4spectraofTitan(Owen,unpublished)andSaturn(Geballe,unpublished).Methanedominatesthe1.0−2.5µmspectraofalloftheaboveouterplanetsandTitan,butthedegreeofdominationvaries,increasinginthesequenceJupiter,Saturn,Titan,andUranus.
ThespectrumofTitanprovidesthebestoverallspectralmatchtothatofGl229Bandthespectraofthetwoexhibitseveralsimilardetails.Mostremarkably,theirverysharpcut-offsat1.61µmareessentiallyidentical(seeFig.3).ThematcheswiththespectraoftheotherSolarSystemobjectsdonotappearasprecise;forexample,thecut-offinSaturnisshiftedby0.01µmtolongerwavelength.Between1.62and1.72µmthewavelengthsofsomeoftheabsorptionmaximainTitanandGl229Bagree.BothTitanandGl229Bshowabsorptionbandsat∼2.17µmand2.20µm(asdoJupiterandSaturn).InTitaneachofthesefeaturesarisesfromCH4(Fink&Larson1979;C.Griffith,pers.comm.).Thus,despitetheconsiderablydifferentphysicalconditionsoftheCH4inGl229Bcompared
–7–
tothoseintheatmospheresofthegiantgaseousplanetsandTitan,detailedcomparisonprovidesclearconfirmationofthestronginfluenceofmethaneonthespectrumofGl229B.
4.2.H2OinGl229B
TheoreticalmodelspectraofbrowndwarfswitheffectivetemperaturessimilartothatofGl229Bshowconsiderableabsorptionduetosteam(Marleyetal.1996;Allardetal.1996).Wenote,however,thatthesemodelspectraonlyincludelowresolutionmethaneopacitiesshortwardof1.6µm(R.S.Freedman,personalcommunication).Jonesetal.(1994)havecompiledlowresolutionspectraofthecooleststarsandattributeabroadabsorptioncenteredatabout1.4µmanditssharpabsorptionedge,whosewavelengththeyreportas1.34µm,toH2O.The1.4µmwaterbandalsoappearsstronglyintheabovemodelbrowndwarfspectra.FollowingJonesetal.,Oppenheimeretal.(1995)identifiedtheabsorptionedgeseeninGl229BataboutthiswavelengthasduetoH2O.
Inthepresentspectrum,theabsorptionedgeinGl229Bisseentobecenteredatabout1.31µm.TheH2OabsorptionedgeinlateMstarsactuallyoccursat1.33µm(Walkeretal.1996)andismuchsteeperthantheabsorptionedgeinGl229B;indeeditisexpectedtostrengthenandsteepenwithdecreasingtemperature.ThemethaneabsorptionedgesofTitanandSaturnarecenteredat1.30µmand1.31µm,respectively.TheworkofJonesetal.isrestrictedtostarswhicharecool,butcertainlynotcoolenoughtohavestrongphotosphericmethanebands.Thus,confusionbetweenCH4andH2Odoesnotariseintheinterpretationofstellarspectra.Weconcludeonthebasisofthelowresolutionspectraalonethattheabsorptionedgeandtroughlongwardof1.3µminGl229Bcannotbeattributedunambiguouslytowateraloneandthatmethanecouldcontributesignificantly.However,whencomparedtothespectraofallofthegiantouterplanetsandTitan,theemissionbumpat1.5−1.6µmisbadlyeatenawayonitsshortwavelengthside(Fig.3).
–8–
AbsorptionbyH2OinGl229BcanexplainthissystematicdifferencebetweenGl229BandthegiantplanetsandTitan.Thesharpestportionofthe1.3µmabsorptionedgeofGl229B,at1.33µm,wouldthenbeduetoH2O.
Althoughthelowresolutionspectraareambiguousastothepresenceofwatervapor,comparisonofthenewhigherresolutionspectrumofGl229BwithplotsofH2Oopacityatsimilarresolution(kindlysuppliedbyD.Saumon,R.S.Freedman,andD.Schwenke)demonstrateitspresenceclearly.AnillustrationofthisisprovidedinFig.4.AlmosteveryabsorptionlineinthespectrumofGl229Bintheintervals1.30−1.34µm,1.53−1.58µm,and1.95−2.07µmhasacounterpartinthewateropacityspectrum.Moreover,thereisgoodoverallcorrelationbetweenobservedandmodelledlinestrengths.Theopacitiesofthelinesintheabovewavelengthintervalsarerelativelylow,implyingthatthedepressionsinGl229Batabout1.4µmand1.9µmareindeedduetoabsorptionbyH2O,whichhasmuchhigheropacityatthosewavelengths.
Thus,thenewspectrumallowsafirmidentificationofwatervaporinthephotosphereofGl229B.Itisclearthat,aspredictedinthemodels,bothH2OandCH4producestrongabsorptionsinthenear-infraredspectrumofGl229B.However,untilthelineparametersofmethanearebetterknown,itwillbedifficultbothtodisentangletherelativecontributionsofmethaneandwaterandtosearchforotherabsorbersatnear-infraredwavelengths.
5.Acknowledgements
Wethankthemanyindividualsresponsiblefortheexcellentconstruction,maintenance,andoperationalsupportofCGS4andthestaffofUKIRTforitssupportoftheseobservations.WearegratefultoR.S.Freedman,D.Schwenke,andD.SaumonforprovidinguswithdetailedopacityplotsofH2OandCH4andtoT.Owenforpermittingustopublish
–9–
aportionofthespectrumofTitan.Wethankthereferee,F.Allard,forseveralhelpfulcomments.WealsothankD.Cruikshank,M.Marley,K.Matthews,T.Nakajima,andB.Oppenheimerfortheirassistance.TheUnitedKingdomInfraredTelescopeisoperatedbytheJointAstronomyCentreonbehalfoftheU.K.ParticlePhysicsandAstronomyResearchCouncil.SRK’sresearchissupportedbyCaltech,theUSNSF,NASA,andthePackardFoundation.CEWacknowledgessupportfromtheUSNationalScienceFoundation.
–10–
6.
REFERENCES
Allard,F.,Hauschildt,P.H,Baraffe,I.&Chabrier,G.1996,ApJ(Letters),inpress.Burrows,A.&LiebertJ.1993,Rev.Mod.Phys.,65,301Fink,U.,&Larson,H.P.1979,ApJ233,1021
Jones,H.R.A.,Longmore,A.J.,Jamesom,R.F.,&Mountain,C.M.1994,MNRAS267,413
Marley,M.S.,Saumon,D.,Guillot,T.,Freedman,R.S.,Hubbard,W.B.,Burrows,A.&Lunine,J.I.1996,Science,submitted
Matthews,K.,Nakajima,T.,Kulkarni,S.,&Oppenheimer,B.1996a,I.A.U.Circ.No.6280
Matthews,K.,Nakajima,T.,Kulkarni,S.R.&Oppenheimer,B.1996b,ApJ,submittedMayor,M.,&Queloz,D.1995,I.A.U.Circ.No.6251
Mountain,C.M.,Robertson,D.J.,Lee,T.J.&Wade,R.1990,inInstrumentationinAstronomyVII,D.L.CrawfordEd.,(Proc.SPIE,1235),25
Nakajima,T.,Oppenheimer,.B.R.,Kulkarni,S.R.,Golimowski,D.A.,Matthews,K.&Durrance,S.T.1995,Nature,378,463
Tsuji,T.,Ohnaka,K.,Aoki&W.1995,inTheBottomoftheMainSequence-andBeyond,C.G.Tinney,Ed.(Springer,Berlin),p.45
Walker,H.J.,Tsikoudi,V.,Clayton,C.A.,Geballe,T.R.,Wooden,D.H.&Butner,H.M.1996,A&A,submitted
–11–
7.
FIGURECAPTIONS
Fig.1.—Combined1.0–2.5µmspectrumofGl229B.Theintensityscaleislogarithmic;negativevaluesnear1.4µmwereremovedpriortoplotting
Fig.2.—SpectralsegmentsforGl229B,covering0.99−2.52µm.Representativenoiselevelsareshownasverticallinesalongthebottomofeachpanel.a.0.99−1.41µm.b.1.39−1.91µm.c.1.−2.52µm.
Fig.3.—SpectraofGl229B(darkerline)andTitan(scaledbyafactorof∼0.003)nearthe1.6µmmethaneabsorptionedge.
Fig.4.—SpectrumofGl229Bandtheopacityofwatervaporinthe1.95−2.10µmregion.TheopacityisforP=1barandT=700K,convolvedtoaresolvingpowerof1000,andiscourtesyofR.S.Freedman,D.Schwenke,andD.Saumon.
–12–
Table1.ObservationLog
Date(UT)Gratingorderλ(µm)Int.TimeConditions
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- sarr.cn 版权所有 赣ICP备2024042794号-1
违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务