Publishedonline30March2010inWileyInterScience(www.interscience.wiley.com).DOI:10.1002/pip.938
RESEARCHARTICLE
Electricalpropertiesoffinelineprintedand
light-inducedplatedcontactsonsiliconsolarcells
M.Ho¨rteis*,J.Bartsch,S.Binder,A.Filipovic,J.Merkel,V.RadtkeandS.W.Glunz
FraunhoferInstituteforSolarEnergySystems,Heidenhofstr.2,D-79110Freiburg,Germany
ABSTRACT
Thepropertiesoffine-lineprintedcontactsonsiliconsolarcells,incombinationwithlight-inducedplating(LIP),arepresented.TheseedlayersareprintedusinganaerosolsystemandanewmetallizationinkcalledSISCdevelopedatFraunhoferISE.Theinfluenceofmultiplelayerprintingonthecontactgeometryisstudiedaswellastheinfluenceofthecontactheightonthelineresistivityandonthecontactresistance.Thedependencebetweencontactresistanceandcontactheightismeasuredusingthetransferlengthmodel(TLM).Furtheron,itisexplainedbytakingSEMimagesofthemetal–semiconductorinterface,thatacontactheightoflessthan1mmoraminimuminkamountofonly4–6mgissufficienttocontactalargearea(15Á6cmÂ15Á6cm)siliconsolarcellonthefrontsideandresultsinacontactresistanceRcÂW<0Á5Vcm.Asthelineresistivityoffine-lineprintedfingersneedstobereducedbyLIP,threedifferentplatingsolutionsaretestedonsolarcells.Theobserveddifferencesinlineresistivitybetweenrf¼5Â10À8and2Â10À8VmareexplainedbytakingSEMpicturesofthegrownLIP-silver.Finally,theoptimumLIPheightfordifferentlineresistivitiesiscalculatedandexperimentallyconfirmedbyprocessingsolarcellswithanincreasingamountofLIPsilver.Copyright#2010JohnWiley&Sons,Ltd.
KEYWORDS
siliconsolarcells;metallization;aerosolprinting;light-inducedplating(LIP);finelineprinting;contactformation*Correspondence
M.Ho¨rteis,FraunhoferInstituteforSolarEnergySystems,Heidenhofstr.2,D-79110Freiburg,Germany.E-mail:matthias.hoerteis@ise.fraunhofer.deReceived20April2009;Revised10August2009
1.INTRODUCTION
Themetallizationofsiliconsolarcellsisplayinganincreasinglyimportantroleinordertoproducesiliconsolarcellsmorecosteffectively.Animprovedfrontsidemetallizationhelpstoreachthisgoalbyincreasingthecellefficiencyandbyreducingthematerialcosts.Themainlossesofametalcontactonasolarcellaretheresistivityofthemetal–semiconductorinterface,thelineconductivityofthecontactfingersandalsotheiropticalshading.Astherequirementsonthematerialsforcontactformationandcurrenttransportaredifferent,itisbeneficialtooptimizethemseparately.Forthis,so-calledtwo-layercontact,severaldepositionmethodsandmaterialshavebeeninvestigatedatISEoverthelastfewyears[1,2].Themetallizationtechniquesforthefirstlayer,thecontactlayer,canbedistinguishedintotwotypesofcontacts:(i)low-temperatureprocesseswherethemetallayerisdepositeddirectlyontheemitterandametalsilicideisformedatamoderatetemperatureofT<4008Cand(ii)high-temperatureprocesseswherethecontactmetalis
240
depositedontheanti-reflectioncoating(ARC)andfiredthroughattemperaturesabove7008C.Thecontactmaterialisusuallydepositedinaprintingstepandcontainssilverparticlesandaglassfrit.ThehightemperaturesarenecessarytoopentheARCandtosupportthereactionbetweentheglassfritincludedinthemetalpasteandthesiliconsurface.Inthiscasenometalsilicideisformedbutsmallsilvercrystallites.Theseareindirectcontactwiththeemitterandresponsibleforthequalityofthemetal–semiconductorcontact[3–6].
Thesecondlayer,whichisresponsibleforthecurrenttransportcanbeprocessedbymultipleprintingofhighlyconductivesilverinksorbyplatingofconductivematerialslikecopperorsilver.Oneverypromisingwaytocreateahigh-performancecontactunderindustriallyfeasibleconditionsisthecombinationoftheaerosolprintingtechnology(AP)forseedlayerdeposition[7]andsucceedinglight-inducedplating(LIP)[8],toproducetheconductivelayer.Duetotheadvancedoptical[9]andelectricalpropertiesofanAP-LIPcontact,solarcellefficienciesgreaterthan20%havebeenachievedona
Copyrightß2010JohnWiley&Sons,Ltd.
M.Ho¨rteisetal.Finelineprintedandlipcontacts
SiO2-passivatedandLFC-contactedhigh-efficiencycellstructure[10].
InthisworkwehaveinvestigatedsomefundamentalaspectsofAPandLIPcontactslikethecontactgeometry,lineresistivityandcontactresistanceasafunctionoftheseedlayerheight.Wedeterminedtheminimallayerthicknesssufficientforanappropriatecontactresistanceaswellastheminimumofrequiredmaterialforabefittingelectricalconductivity.
2.EXPERIMENTAL
Anaerosolsystemwasusedtodeposittheseedlayercontactstructuresonsiliconsubstrates.Thecontactmaterialisasilver-richinkforfrontsidecontactscomparabletoastandardscreenprintingpaste.Theink,calledSISC(seedlayerinkforthemetallizationofsolarcells)hasbeendevelopedatFraunhoferISEforfine-lineAP.Tostudytheeffectsofmultiple-layerprintingonthecontactgeometry,metallinesweredepositedonshiny-etchedwafers.Thelineheightwasvariedbymultipleprinting(1–15layers),seeFigure1.Theprintedlineswerefiredinanin-linefurnaceandfinallyplatedinacyanidic(CN)platingbathusingthelight-inducedprocess.Thecontactgeometry,especiallythecross-sectionwasdeterminedbyconfocalmicroscopicmeasurementsandverifiedwithmicroscopicpicturesfrompolishedcontactcross-sections.Thelineresistanceforallcontactstructureswasmeasuredusinga4-probemeasurementandthespecificlineresistancewascalculatedtakingintoaccountthedeterminedcross-sectionarea.Additionally,therelationbetweencontactresistanceandinkdensity(g/m2)wasstudiedinordertodeterminetheminimumamountofink,whichisnecessarytocontactthefrontsideofasiliconsolarcell.Theinkdensityisquantifiedbymassofdryink(withoutsolvents)percontactarea.Contactstructureswereprintedwithdifferentspeedsandheights(differentinkdensities)onrandomtexturedCz-wafers.TheshallowdiffusedemitterwithasheetresistanceofRSH¼50V/sqiscoveredbyaPECVD-SiNx(x¼1Á075)anti-reflectivelayer.Theheightofthelineswasvaried
from1to9mm.Afterprinting,thecellswerefiredinanin-linefurnaceandsubsequentlyplatedbyLIP.Thecontactresistanceofeachcontactstructurewasdeterminedbyatransferlengthmodel(TLM)measurement.TheinfluenceoftheinkdensityonthecontactresistancecouldbeanalysedbytakingSEMimagesofthemetal–semicon-ductorinterface.Forthispurpose,thefrontsidemetallization,AgandtheglassfritwereselectivelyremovedbyaHNO3/HFsequenceandtheremainingAgcrystallitescouldbeinvestigated.InordertoavoidtheremovalofthePECVDnitridelayer,theetchinginHF(5%)waslimitedforallsamplesto4min.Witvrouwaetal[11].foundanetchingrateforPECVD-SiNxcoatingsof7Á6nm/minforHF(4%)solutions,thereforewecontrolledthepresenceoftheSiNx-coatingnexttothecontactsandcouldnotobserveseriousetching.
Inasecondexperiment,westudiedtheelectricalpropertiesoftheLIP-silver.Therefore,weprintedfineseedcontactsonindustriallypre-producedlarge-areamulti-crystallinesiliconsolarcellsandfiredtheminanconveyor-beltfurnace.Theinfluenceofthreedifferentelectrolytesonthelineconductivityofacontactfingerwasstudied..Toinvestigatetheinfluenceoftheelectrolyteontheconductivityofthecontactfingerthreedifferentelectro-lyteswereusedintheLIPprocess.Oneofthemwasacyanidicelectrolyte(CN-LIP)andtwowerenon-cyanidic(NCN1andNCN2).Thecontactfingerswereisolatedbyadicingsawandtheinfluenceoftheplatingsolutiononthelineconductivitywasdeterminedbya4-probemeasure-mentbeforeandafteranannealingstep.Additionally,thecontactmicrostructurewasanalysedbySEMimages.Furtheron,10multicrystallinesolarcellsofasizeof15Á6cmÂ15Á6cmwerecontactedwithaseedlayergrid.Thecellsweredividedintwogroupsoffivecells.EachgroupwassuccessivelyplatedandconsecutivelyIV-measuredinordertodeterminetheoptimumamountofLIP-silverfortwoplatingsolutions(CNandNCN1).
2.1.Aerosol-printedcontacts
ThecontactgeometryformultipleAPlinescanbeseeninFigure2.Thelineswereprintedontopofeachother.Generally,thelinewidthismainlydeterminedbytheopeningoftheprintingnozzle.Inthiscasetheopeningwas200mmresultingin50mmwidelines.However,smallerlinewidthscanalsobeachieved[12].Theheightofthesingleprintedlineislimitedto1mm,whichisconsistentwiththediameterofthesilverpowderusedinthecontactink.Hence,finercontactscanbeobtainedwithanink-containingfinerparticles.Eachfurtherprintingstepincreasesthelineheightbyanothermicrometer.Thecontactsaregrowingfasterinheightthaninwidth,indicatedbyalinearlyincreasingaspectratio.Thespecificlineresistivitywasdeterminedfromthemeasuredlineresistancetakingintoaccountthecross-sectionalarea.Forthesingleprintedcontactnovaluecanbegivenasthecontactisnotcontinuous(seeFigure4).Forallother
241
Figure1.Aspectratios(fingerheight:width)forsingle–15layer
aerosolprintedfingersasprintedandafterfiring.
Prog.Photovolt:Res.Appl.2010;18:240–248ß2010JohnWiley&Sons,Ltd.DOI:10.1002/pip.938
FinelineprintedandlipcontactsM.Ho¨rteisetal.
Figure2.Cross-sectionmeasurementsfrom1-to15-fold(one
overeachother)printedfingersafterthecontactshavebeen
fired.
Figure4.Topviewofasingleprintedandfiredseedlayer
contact.
contacts,thevaluesareillustratedinFigure3.Aconstantincreaseinthecross-sectiontogetherwithasteadydecreaseinlineresistanceshouldleadtoaconstantresistivity;nevertheless,themeasuredresistivityisdecreasingwitheveryprintingstep.Therearetworeasons:firstofall,thesinteringbehaviourofthesilverparticlesissupportedbyahigherinkdensity,asthesilverparticlescanfindaneighbourparticleinalldirections.Multiplecurrentpathsarepossible,whichreducesthelineresistivity.Second,theinfluenceoftheglassfritonthelineresistivitydecreasesduringthefiringstep.Theglassmelts,segregatesfromthesilver,diffusestowardsthesiliconsurfaceandtheremainingpuresilverformsacontinuousconductivelayer.Thecontactcanbebuiltuplinebylineandachieveresistivitiescomparabletoscreenprintedcontacts.Inconclusion,thehighertheseedlayers,thelowerthespecificlineresistivitybeforeplating.
However,thecontactwearelookingforissupposedtobeaseedlayer,whichhastobethickenedinaLIPprocesstoreachitsfinalresistivity.Themultipleprintedcontactsareplatedwiththesameamountofsilverandthelineresistivityismeasured.InFigure3theadvantageofathin,subsequentplatedseedlayerisobvious.Ingeneraltheresistivityforallplatedcontacts,independentontheseedlayerheight,isreduced.However,thebestconductivitywasachievedforthesingleprintedseedlayerwhichinitiallywasnotmeasurable.
Ingeneral,thelessmaterialisdepositedfortheseedlayer,theloweristhetotallineresistivityafterplating.Incaseofthesingleprintedcontact,alineresistivityofrf¼1Á9Â10À8Vmismeasured,whichisalreadyclosetothevalueofbulksilver(rf¼1Á59Â10À8Vm).Theresistivityofacontactstructurewithaflatseedlayerisdominatedbytheconductivityofplatedsilver.AstheconductivityofLIP-silverismuchhigherthantheconductivityofprintedsilver,AP,orscreen-printed,itisadvisabletokeepthefractionofprintedsilverassmallaspossible.Thecross-hatchedareainFigure3representstheresistivityofscreenprintedcontacts.Aslongastheseedlayerheightisbelow10mm,thetwo-layer-contactstructureissuperiorinresistivitycomparedtoscreenprintedcontacts.
Inafurtherexperimenttheinfluenceoftheseedlayerheightonthecontactresistancewasinvestigated.Tobeindependentofprintingparameterslikelinewidth,printingspeedandmaterialoutput,avalueforthedepositedinkmass,theinkdensity(g/m2),wasdefined.Forthiswemeasuredtheinkoutputoftheprinter,thelinewidthandtheprintingspeed.Fromthisdataanareadensitycanbecalculatedby
r¼
dvÂwc
(1)
Figure3.SpecificlineresistivityasafunctionofprintinglayersafterfiringandafterCN-LIP.Thedashedlinemarkstheconduc-tivityofbulksilverandthecross-hatchedareatheresistivityof
screenprintedcontacts.
Equation(1):Inkdensity(dry)width,whereristheinkdensity,dthethroughput,vtheprintingspeedandwctheseedlayerwidth.
242
Prog.Photovolt:Res.Appl.2010;18:240–248ß2010JohnWiley&Sons,Ltd.
DOI:10.1002/pip.938
M.Ho¨rteisetal.Finelineprintedandlipcontacts
Forexample,a45mmwide,withaspeedof20mm/sandamaterialoutput(dry)ofd¼0Á2mg/minprintedline,resultsinaninkdensityofr¼3Á7g/m2.Asolarcellwithanareaof15Á6cmÂ15Á6cmandagridof80fingersand2busbarscanbecontactedusingonly4Á4mgink.InFigure4atopviewofsuchafiredseedcontactisshown.Thesurfacetextureisstillvisibleandthecontactareaisnottotallycoveredbytheink,neverthelessthisisanexampleforacontactwithacontactresistanceRcÂWbelow0Á5Vcm.ThecontactresistancewasmeasuredusingtheTLM[13,14].ThecontactstructuresweremeasuredaftertheLIPstep.TheplatedsilverisnecessaryforreliableTLMresultsasitisnotpossibletocontactandmeasureathinseedlayerdirectly.Thecontactresistanceofthenon-platedcontactscanonlybemeasuredifenoughinkispresentandtheseedlayerheightexceedsabout4mm.Inthiscase,wedidnotfindadifferenceincontactresistanceforplatedorunplatedfingers.Thepositiveeffectofaplatingsteponafiredseedlayercontact[15]couldnotbeinvestigatedinthisexperimentastheseedlayeristoothinandnoleakageglasslayerwasfoundnexttothecontact.AllmeasuredcontactresistancesareshowninFigure5.ToprovethereliabilityoftheTLMmeasurementtheemittersheetresistance,alsoobtainedbyTLMmeasurementisplotted,too.Themeasuredsheetresistanceforeveryteststructurewasaround48Æ5V/sq,whichisconsistentwiththeexpectedRSHforthesecells(45V/sq Figure6.SEMimagesofthesilvercrystallitesandthecellsurfaceunderafrontcontact.(a)Singleprintedcontactwithv¼20mm/s(lowinkdensity<10g/m2).AhighcrystallitedensityisvisiblebuttheSiNx-coatingismainlyuntouched.(b)Mediuminkdensities(10–20g/m2),thecrystallitedensityisapproxi-matelythesame,butadditionallytheSiNx-coatingisstronglyetched.(c)Highinkdensity(>20g/m2),thesurfaceandthewholeSiNx-coatingisetchedaway,butthenumberofsilver crystallitesorimprintsisstillconstant. Figure5.Contactresistancemeasurementsfordifferentinkdensities(calculatedfromlinewidth,materialoutputandprintingspeed)andcontactheights.TheemittersheetresistanceisadditionallymonitoredtoproofthereliabilityoftheTLM measurement. thecorrelationbetweeninkdensityandcontactresistivity,thesilverwasetchedoffasdescribedaboveandSEMimagesweretakenfromthemetal–semiconductorjunction(seeFigure6a–c).Aconstantlyhighdensityofsilvercrystallites,whicharemainlyresponsibleforahigh-qualitycontact,couldbefoundindependentlyofthecontactheight.Thus,itisnotthecrystallitedensitywhichdegradesthecontactqualitywitharisinginkdensity.Additionally,anincreasingopeningoftheSiNx-passiva-tionlayerwasobserved.Incontrarytothecommonunderstanding[16],thecontactresistanceincreasedwithincreasingopeningoftheSiNx-layer.ThehighertheinkdensitywasthemoreSiNxwasetchedoff.Ahigherinkdensityisequivalenttoahigheramountofreactiveinkcomponents(glass)percontactarea.Thehigheramountofglassatthecontactinterfacehastwoeffects:first,theglass 243 Prog.Photovolt:Res.Appl.2010;18:240–248ß2010JohnWiley&Sons,Ltd.DOI:10.1002/pip.938 FinelineprintedandlipcontactsM.Ho¨rteisetal. itselfformsathickerinsulatinglayerandsecond,theglass etchestheSiNx-layerandaneventhickerglasslayerisformedduringfiring.TheSiNx-layerisoxidizedtoSiO2bythemetaloxidesintheglass.TheSiO2issolvedintheglassandthethicknessoftheinsulatingglasslayerincreasesevenmore.Ontheonehand,thecontactareashouldbeaslargeaspossible(openedARC);ontheotherhand,theresultinginsulatingglasslayershouldbeasthinaspossible.Inconclusion,agoodcontactresistancecanbeachievedbykeepingtheSiNx-layernon-etchedapartfromthepointswheresilvercrystallitesareformed(seeFigure6a).Inthiscase,theglasslayerisverythinandmainlydeterminedbytheinitialamountofglasswhosecontentshouldbeaslowaspossible.FromourexperimentswecanconcludethatthecurrentbetweensolarcellandmetalgridcanonlyflowviatheAgcrystalliteswhileallothersuggestedcurrentpathsseemnottobesignificant[6,17]. Thus,thethinnertheprintedcontact(lowinkdensity)usingourSISCinkis,thebetterthecontactresistance.Foragoodfrontsidemetallizationtheinkdensityoftheseedlayershouldbeaslowaspossible,justenoughtoformahighdensityofsilvercrystallites,achieveagoodadhesionandagoodabilityforplating.Forinkdensitiesbelow2Á5g/m2,nocontinuouslinecouldbeachievedafterLIP. Tosummarizetheelectricalpropertiesofatwo-layercontact,boththelineresistivityaswellasthecontactresistanceisbeneficialifkeepingtheseedlayerasthinaspossible.Thecontactformationbetweentheseedlayerandtheemitterofasolarcellismoreefficientwithathinseedlayer.Additionally,thelineresistivityofatwo-layercontactisreducedwithareducedseedlayerheightandmainlydeterminedbytheresistivityoftheLIP-silver(seeLight-InducedPlatingSection). Figure7.Simulationofthetotallosses(opticalandelectrical)dependentontheamount(height)ofdepositedsilverfordiffer-entlineresistivities. 2.2.Light-inducedplating Thefirstpartoftheabovesectionillustratestheimportanceofthelineresistivityofplatedsilver.Thetwo-layerconceptisonlyadvantageouscomparedtoasinglelayer(e.g.athickscreenprinted)contact,iftheplatedsilverhasahighconductivity.InFigure7,thetotallosses(electricallyandoptically)aresimulatedindependenceontheplatedsilverheightandwidth,respectively,fordifferentresistivities.Asimulation[17]wasperformedforaninfinitelythinand30mmwidelayerwitharesistivityofrc¼1mVcm2onanemitterwithasheetresistanceofRSH¼60V/sq.Forthewidthofthetotalcontactagrowthmechanismof1:2(height:width)wasassumed.Thesimulatedgridhas80fingersand3busbars(1Á5mmeach)ona15Á6cmÂ15Á6cmlargesolarcell. Atsmallplatingheights,thelossptotisdominatedbyelectricallossesandstronglydependentontheamountofdepositedsilver.Atlargeplatingheightsthelossmechanismisdominatedbyopticallosses,duetoanincreasedfingerwidth.Thetotallosscurveisnotsymmetric,i.e.beyondtheoptimalplatingheightthe 244 dependenceofthetotallossishigheratsmallerfingerheights.Thus,concerningthetotalcellloss,itismorefavourabletoplatetoomuchsilverthantoolittle.Thesolarcellefficiencyisverystableoverabroadrangeofplatedsilvermass(seebelow).Ahighconductivityofthesilverisbeneficialintwoways:Thetotallosseswerediminishedandtheamountofrequiredsilverissmallerandtherequiredprocesstimeforplatingisshorter.Forexample,ifthelineresistivityisreducedfromrf¼3Â10À8to1Á9Â10À8Vmtheoptimumlineheightcanbereducedfrom14to11mm(21%)thelinewidthby10%andthecross-sectionfrom730to520mm2.Asthecross-sectionisnearlydirectlyproportionaltotheamountofplatedsilver,28%lesssilverisconsumed. ThelineresistivityofAPandsubsequentLIPfingersisshowninFigure8.TheAPseedlayeristhinenough(<1mm)anditscontributiontotheresistivityisnegligibleastheplatedsilverhasaheightof15mm.ThegrowthmechanismandthemorphologyoftheLIP-silverdependamongotherthingsontheusedelectrolytes.Three Figure8.Lineresistivityforthreedifferentplatingsolutions,beforeandafteranannealingstepof10minatT¼3508C. Prog.Photovolt:Res.Appl.2010;18:240–248ß2010JohnWiley&Sons,Ltd. DOI:10.1002/pip.938 M.Ho¨rteisetal.Finelineprintedandlipcontacts differentplatingsolutionsweretested,oneCNandtwoNCNelectrolytes.Theplatingparameterslikelightintensity,appliedpotential,pHvalueandtemperaturewerekeptinanoptimizedrangeforeachelectrolyte.ThestronginfluenceoftheusedelectrolyteonthelineresistivitycanbeexplainedbySEMimages(seeFigures9and10).Alsotheinfluenceofanannealingstepbecomesclear.Both,themacroscopicshapeoftheplatedfingerandthemicrocrystallinityareinfluencedbythedifferentelectrolytes.ThesilverlayerdepositedfromtheNCN1electrolyteshowsabotryoidallymorphology.Theseveralclusterscanreachthevalueoftheheightofthefinger,thus,morethan10mmindiameter.Theclusters,althoughvery Figure10.SEM-closeupviewofthedifferentplatedfingers:(a)non-cyanidicsolutionNCN1,(b)non-cyanidicsolutionNCN2,(c)cyanidicsolutionCN–thesingleAggrains,grownduringthe platingprocessarevisible. Figure9.SEMimageoftheplated,conductivelayer.(a)Foranon-cyanidic(NCN1)platingsolution.Noticeablearethelargeclusterboundariesandthebotryoidalgrowth.(b)Foranon-cyanidic(NCN2)platingsolutionand(c)foracyanidic(CN)platingsolutionthesurfacesaremuchsmootherandtheindividual grainsarelessdistinct. finegrained,canbedistinguished.Astheresistivityisdeterminedbythesmallestcross-section,thecurrentflowismainlylimitedbythesedeepincisions.Forthemeasurementoftheresistivitywedeterminedanaveragecross-sectionandthebotryoidalstructureislevelled.Supposedthattheresistivityofasingleclusterishighandintherangeofbulksilver,duetotheroughmorphologyandtheclusterboundaries,thelineresistivityislimited,evenifthecontactlossesacrosstheclusterboundariescanbereducedbyanannealing.Thus,alargefractionofplatedsilverdoesnotcontributetothecurrentflow. IncaseoftheNCN2solution,theseveralAgclustersarepyramidalortrigonaltoacertainextent.Theyaremuchsmaller,below1mmanddeepincisionswhichwouldreducethecross-sectionandthemeasuredresistivityare 245 Prog.Photovolt:Res.Appl.2010;18:240–248ß2010JohnWiley&Sons,Ltd.DOI:10.1002/pip.938 FinelineprintedandlipcontactsM.Ho¨rteisetal. notvisible.TheLIP-silvergrowshomogeneouslyatthe surfaceattheratioof1:2(height:width)resultinginaroundish-shapedcontact.ThesurfaceroughnessisdeterminedbythesmallAgclustersandalmostalltheplatedsilvercontributestothecurrentflow.Themeasuredresistivityofrl¼2Á2Â10À8Vmcanonlyslightlybeimprovedbyanannealingstep,indicatingthedensesilverdepositionandtheexcellentconductivitybetweenthesingleAggrains. ThebestvaluesforlineresistivitycanbeachievedwiththeCNelectrolyte.Themeasuredaveragevalueofrl¼1Á9Â10À8Vmisclosetotheresistivityofbulksilver(rl¼1Á59Â10À8Vm).Thesurfaceissmooth,i.e.noAgclusterscanbedistinguishedanymore.Possibly,thestructurerevealssingleAggrainsinaSEMimageofapolishedcross-section.Thegrainboundariesbetweenthegrainsarehardlyvisible,andaninfluenceofanannealingstepontheresistivityisbarelymeasurable.However,furtherinvestigationshavetobeperformedtorevealthecorrelationbetweenlayerstructure(ondifferentscales)andelectricalproperties. Inconclusion,theCNplatingsolutionisthebestchoiceintermsofelectricalandopticalproperties.AlsotheprocessstabilityismuchhigherforCNelectrolytes.However,thehealthyrisksinanindustrialproductionhavetobetakenintoaccount.AgoodalternativetotheCNelectrolyteistheplatingsolutionNCN2whichresultsinalineresistivityclosetotheoneofCNplating. mc-solarcells(15Á6cmÂ15Á6cm)withaseedlayergridwith80fingersand2busbars,APandfiredwereusedtoperformanexperimentconcerningthecellfillfactor(FF)aswellastheseriesresistance(Rs)independenceonthemassofLIP-silver(seeFigure11).ExaminedweretheLIPsolutionsCNandNCN1,respectively.AcontinuousincreaseoftheFFwiththemassofplatedsilverwasobservedtogetherwithasteadydecreaseofRs.IncaseoftheCNsolutiontheFFreacheditssaturationatasilvermassofapproximately100mgperwaferwhereassimilarFFswerereachedfortheNCN1solutionatabout130mg. Figure12.CurrentdensityjscandcellefficiencyhasafunctionofLIP-silvermassandcontactheightfromtheconstantdecrease injsc,aneffectivecontactwidthiscalculated. ThelineresistanceiscontinuouslyreducedwiththequantityofdepositedLIPsilverandboth,thevaluesforRsandfortheFFareimproved.ExceedingaLIP-silvermassofabout200mganimprovementforbothelectrolyteswashardlymeasurableandtheFFswereconstantinthetestedrange. Theshort-circuitcurrentdensity(jsc)isquitesensitivetothemassofplatedsilveranddecreaseslinearlywiththedepositedsilveramount(seeFigure12).ForbothplatingsolutionsaslopeofaboutÀ1Á6mAcmÀ2/gwasobserved.Fromthemeasuredcurrentdensities,jsc_ini(aftershortLIP)andjsc_LIP(afterLIP)aneffectivefingerwidth(weff)canbecalculated.Iftheareaoftheseedlayermetallizationisknown(Aactive_ini),theinitialnon-metalizedarea(Aactive_cell)isknownaswell.Withincreasingamountofplatedsilver,thenon-metalizedareaandalsothevalueofjscisreduced.Theaccordingopticallyeffectivemetalizedareafortheplatedfingers(Afi_eff)forallvaluesofjsccanbedeterminedbysubtractingthenon-metalizedareatogetherwiththeareaofthebusbars(ABB)fromthetotalcellarea(Atot_cell).Finally,theeffectivewidthofasinglefingercanbedeterminedaccordingtoEq.2.Itiswellknownthattheopticaleffectivewidthofacontactfingercanbeconsiderablysmallerthanitsgeometricalwidth[18]. weff¼ Afieffi;whereAfi lfiÂnfi cell eff¼Atot¼ ÀAactive cell ÀABBandAactive cell jsciniÂAactive jscLIPini(2) Figure11.Fillfactor(FF)andseriesresistance(Rs)asafunctionoftheamountofplatedsilverforboth,NCN1andCNplating solutions. Equation2:Calculationoftheeffectivecontactwidth,determinedfromthejscvalues. InFigure12thecalculatedopticallyeffectivefingerwidthfortheNCN1-LIPisshown.Therealfingerwidthwf,determinedfromamicroscopicpicture,foracontactplatedwith360mgNCN1-LIPisaboutwf¼100mm.Itseffectivewidth,determinedformthecurrentdensity,isaboutweff¼87mm.Thisreductionwillbeevenhigherifthecells 246 Prog.Photovolt:Res.Appl.2010;18:240–248ß2010JohnWiley&Sons,Ltd. DOI:10.1002/pip.938 M.Ho¨rteisetal.Finelineprintedandlipcontacts areencapsulatedintoamoduleduetotheinternalreflectionattheglass–airinterface[19]. TheeffectivewidthforCN-LIPcontactisevensmallerandtheaveragejscvaluesfortheCN-LIPareabout0Á2mA/cm2abovetheaveragecurrentdensityoftheNCN1-LIPeveniftheyarebuiltupwiththesameamountofLIP-silver.The0Á2mAhigherjscvaluesincaseofCN-LIPcanbetranslatedintoareductionineffectivecontactwidthby10mmwhichgivesintotalanabsoluteincreaseinthecellefficiencyofDh¼0Á1%. Thecellefficiencyreachesitsmaximumatabout200mgforbothsolutions.Passingthispoint,thegaininefficiencyduetoanincreasingFFiscompensatedbythesteadydecreaseinjsc.ThecellefficiencyisconstantoverabroadrangeandstartstodecreaseduetothegrowingshadinglossesatLIPquantitiesof350mgforCN-LIPand450mgforNCN1-LIP,respectively.Asexpectedfromthesimulation,thecellefficiencyisquiteinvariantwithrespecttohighquantitiesofLIP-silver. ACKNOWLEDGEMENTS TheauthorsgratefullywouldliketothankallmembersfromISEwhocontributedtothisworkespeciallyDanielSchmidtforsolarcellprinting,JohannesSpannagelforresistanceandTLMmeasurements,DamianPyschforhis ¨fferforsupportingridsimulationandElisabethScha measuringthecellparameters. REFERENCES 1.GlunzSW,AlemanM,BartschJ,BayN,BayerK,BerganderR.Progressinadvancedmetallizationtech-nologyatFraunhoferISE.Proceedingsofthe33rdIEEEPhotovoltaicSpecialistsConference,SanDiego,USA,2008. 2.GlunzSW,AlemanM,BartschJ,BayN,BayerK, ¨rteisBerganderR,FilipovicA,GreilS,GroheA,Ho ¨M,MetteA,PyschD,RadtkeV,M,KnorzA,Menko RichterP,RudolphD,RublackT,SchetterC,SchmidtD,SchultzO,WoehlR.Newconceptsforthefrontsidemetallizationofsiliconsolarcells.Proceedingsofthe21stEUPVSEC,Dresden,Germany,2006. 3.SchubertG.ThickFilmMetallisationofCrystallineSiliconSolarCells.UniversitatKonstanz:Kon-stanz,2006;142. 4.BallifC,HuijicDM,Hessler-WyserA,WillekeG.NatureoftheAg–Siinterfaceinscreen-printedcon-tacts:adetailedtransmissionelectronmicroscopystudyofcross-sectionalstructures.Proceedingsofthe29thIEEEPVSC,NewOrleans,Louisiana,USA,2002. 5.HilaliMM,ToB,RohatgiA.Areviewandunder-standingofscreen-printedcontactsandselective-emit-terformation.Proceedingsofthe14thWorkshoponCrystallineSiliconSolarCellsandModulesNREL,WinterPark,Colorado,USA,2004. 6.HuljicDM,BallifC,Hessler-WyserA,WillekeG.MicrostructuralanalysesofAgthick-filmcontactsonn-typesiliconemitters.Proceedingsofthe3rdWCPEC,Osaka,Japan:WCPEC-3OrganizingCom-mittee,December2003. ¨rteisM,GlunzSW.Metal7.MetteA,RichterPL,Ho aerosoljetprintingforsolarcellmetallization.Pro-gressinPhotovoltaics2007;115:621–627. 8.MetteA,SchetterC,WissenD,LustS,GlunzSW,WillekeG.Increasingtheefficiencyofscreen-printedsiliconsolarcellsbylight-inducedsilverplating.Proceedingsofthe4thWCPEC,Waikoloa,Hawaii,USA,2006. ¨rteisM,GlunzSW.Determinationofthe9.WoehlR,Ho effectiveopticalwidthofscreen-printedandaerosol-printedandplatedfingers.Proceedingsofthe23rdEUPVSEC,Valencia,Spain,2008. ¨rteisM,GlunzSW.Finelineprintedsiliconsolar10.Ho cellsexceeding20%efficiency.ProgressinPhoto-voltaics2008;16:555–560. 11.WitvrouwaA,DuBoisaB,DeMooraP,VerbistaA, VanHoofaC,BenderaH,BaertaK.Acomparison 247 3.SUMMARY Theelectricalperformanceoffine-lineprintedseedlayers,subsequentlyplatedwerestudiedindetailontestsamplesandonsolarcells.Regardingtheelectricalpropertiesofatwo-layercontactitisbeneficialtoboth,thelineresistivityandthecontactresistancetokeeptheseedlayerasthinaspossible.Thefractionoftheseedlayerofthetotalcontactcross-sectionneedstobeminimizedwhilethefractionoftheLIP-silvershouldbemaximizedtoachievelowestvaluesforthelineresistivityofaboutrf¼1Á9Â10À8Vm.Additionally,theinfluenceoftheheightoftheprintedseedlayeronthecontactresistancewasinvestigated.Thecontactformationbetweentheseedlayerandtheemitterofasolarcellismoreefficientforathin(h<2mm)thanforathick(h¼2–9mm)seedlayer.InSEMimagestheinfluenceoftheseedlayerthicknessonthecontactinterfacewasinvestigated.Foralow-contactresistanceitisimportanttoetchaslittlematerialfromthewafer(SiNx-layer,Si)tokeeptheresultingglasslayerasthinaspossible.Foragoodfrontsidemetallizationtheprintedlineheightoftheseedlayershouldbeaslowaspossible,justenoughtoformalow-ohmiccontact,toachieveagoodadhesionandtoprovideagoodabilityforplating.AsthespecificlineresistivityofthetotalcontactisdeterminedbythequalityofthedepositedLIP-silver,differentplatingsolutionswereinvestigatedbyanalysingtheplatedcontacts.Differentlineresistivities,fromclosetobulksilver(CN-LIP)uptoresistivitiescomparabletoscreenprintedcontacts(NCN1-LIP)werefound.TheoptimummassofLIP-silvernecessarytometallizeasolarcellisdeterminedtheoreticallyandexperimentally.Alineresistivityofrf¼1Á9Â10À8Vmcomparedtorf¼3Á0Â10À8Vmsavesalmost30%ofsilver.Inaddition,measuringthecurrentofsolarcellsasafunctionofplatedsilver,theeffectiveopticalfingerwidthisdeterminedtobeabout15%smallerthanthegeometricalcontactwidth. Prog.Photovolt:Res.Appl.2010;18:240–248ß2010JohnWiley&Sons,Ltd.DOI:10.1002/pip.938 FinelineprintedandlipcontactsM.Ho¨rteisetal. 12. 13. 14. 15. betweenwetHFetchingandvaporHFetchingfor sacrificialoxideremoval.SPIEProc.MicromachiningandMicrofabricationProcessTechnology,SantaClara,2000. ¨rteisM,MetteA,RichterPL,FidorraF,GlunzSW.Ho Furtherprogressinmetalaerosoljetprintingforfrontsidemetallizationofsiliconsolarcells.Proceedingsofthe22ndEUPVSEC,Milan,Italy,2007. MeierDL,SchroderDK.Contactresistance:itsmeasurementandrelativeimportancetopowerlossinasolarcell.IEEETransactionsonElectronDevices1984;ED-31:7–653. SchroderDK,MeierDL.Solarcellcontactresistance–areview.IEEETransactionsonElectronDevices1984;ED-31:637–7. PyschD,MetteA,FilipovicA,GlunzSW.Compre-hensiveanalysisofadvancedsolarcellcontactscon-sistingofprintedfine-lineseedlayersthickenedby 16. 17. 18. 19. silverplating.ProgressinPhotovoltaics2008;17:101–114. ¨rteisM,GlunzSW.Peakfiringtempera-GruppG,Ho turedependenceofthemicrostructureofAgthick-filmcontactsonsiliconsolarcells–adetailedAFMstudyoftheinterface.Proceedingsofthe20thECPVSEC,Barcelona,Spain,2005. MetteA.Newconceptsforfrontsidemetallizationof ¨r¨tfuindustrialsiliconsolarcells.DissertationFakulta ¨tFreiburg,AngewandteWissenschaften,Universita 2007;231. BlakersAW.Shadinglossesofsolar-cellmetalgrids.JournalofAppliedPhysics1992;71:5237–5241. ¨rteisM,GlunzSW.AnalysisoftheWoehlR,Ho opticalpropertiesofscreen-printedandaerosol-printedandplatedfingersofsiliconsolarcells.AdvancesinOptoElectronics2008,2008;1–7. 248 Prog.Photovolt:Res.Appl.2010;18:240–248ß2010JohnWiley&Sons,Ltd. DOI:10.1002/pip.938 因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- sarr.cn 版权所有 赣ICP备2024042794号-1
违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务