ManishAgrawal1,S.B.Santra2,RajatAnand1andRajaramSwaminathan1
DepartmentofBiotechnology,2DepartmentofPhysics,
IndianInstituteofTechnologyGuwahati,Guwahati-781039,Assam,India.
1
2008Thecytoplasmofalivingcelliscrowdedwithseveralmacromoleculesofdifferentshapesandsizes.Moleculardiffusioninsuchamediumbecomesanomalousduetothepresenceofmacromoleculesanddiffusivityisexpectedtodecreasewithincreaseinmacromolecularcrowding.Moreover,manycellularprocessesaredependentonmoleculardiffusioninthecellcytosol.Theenzymaticreactionratehasbeenshowntobeaffectedbythepresenceofsuchmacromolecules.Asimplenumericalmodelisproposedherebasedonpercolationanddiffusionindisorderedsystemstostudytheeffectofmacromolecularcrowdingontheenzymaticreactionrates.Themodelexplainsqualitativelysome loftheexperimentalobservations.
Ju PACSnumbers:02.50.Ey;05.40.Jc;05.60.Cd
91 INTRODUCTION
]hceTheaqueousphaseofcellcytoplasmiscrowdedwithmmacromoleculessuchassolubleproteins,nucleicacids-andmembranes[1].Theinfluenceofsuchcrowdingtaonbiochemicalreactionsinsidephysiologicalmediaaretmanifold[2].Duetocrowding,theaveragefreeen-s.ergyµofanonspecificinteractionbetweenanymoleculetainthemediumandacrowdingmoleculemaychangemconsiderablywhichmayinfluencethereactionactivity-γ=exp(µ/kBT),wherekBistheBoltzmannconstantdandTistheabsolutetemperature.Stericrepulsionisnothemostfundamentalofallinteractionsbetweenmacro-cmoleculesinsolutionatfiniteconcentrationandasan[effectofsuchrepulsionthemacromoleculesoccupyasub- 1stantialvolumefractioninthecellinterior[3].Signifi-vcantvolumefractionofmacromoleculesinthemedium8imposesaconstraintonintroducinganynewmacro-6molecule.Asaconsequenceofcrowding,macromolecular0associationreactionsbecomeincreasinglyfavorable.Be-3.causeofcrowding,themoleculardiffusioninthemedium7isexpectedtobeanomalous[4].Theeffectofmacro-0molecularcrowdingondifferentkineticstepsofenzyme80catalysissuchasformationofenzyme-substratecomplex:andenzyme-productcomplexwereanalyzedthroughdif-vferentequilibriumthermodynamicmodels[5].AnumberiXofapproacheshavebeenproposedtostudytheeffectsrofmacromolecularcrowdingonthereactionkineticratealawssuchasthelawofmassaction[5],fractallikeki-netics[6],thepowerlawapproximation[7],stochasticsimulation[8]andlatticegassimulation[9].Intheseana-lyticandnumericalmodels,theinfluenceofmacromolec-ularcrowdingonbothequilibriumthermodynamicsandreactionrateswereaddressedanditwasobservedthattheratedecaysexponentiallywithtimeasexpectedinequilibriumkinetics.Theinfluenceofmacromolecularcrowdingontheenzymaticreactionrateshasbeeninves-tigatedexperimentallyusingavarietyofcrowdingagents[10].Thesestudieshavealsoindicatedasignificantin-fluenceofcrowdingontherateparametersoftheenzy-
maticreaction.Itwasfoundthattheeffectofcrowdingontheenzymaticreactionmaybedifferentdependingonwhethertheproductformationintheenzymereac-tionislimitedbythediffusionalencounterofsubstrateandenzymeortheformationofthetransitionstatecom-plex,anassociationofenzymeandsubstrate.Moreover,moleculardiffusionisknowntobethemajordetermi-nantofmanycellularprocessesandplaysakeyroleincellmetabolismwheretheencounterofthefreesubstratewithanactivesiteoftheenzymeisoftentheratede-terminingstep.However,howthekineticsofanenzy-maticreactionisdependentonthesizeandconcentrationofthecrowdingmacromoleculesisstillnotfullyunder-stood.Themacromolecularcrowdingtilldateremainsunderappreciatedandneglectedaspectoftheintracellu-larenvironment[11].Itishenceessentialtounderstandtheexperimentalobservationsfrommicroscopicorigin.Inthispaper,anapproachbasedonnon-equilibriumdynamicsofenzymaticreactionsinthediffusionlimitedregimeisconsidered.Theaimistounderstandquali-tativelytheinfluenceofinertmacromolecularcrowdingonthediffusionlimitedenzymaticreactionsgovernedbynon-equilibriumthermodynamics.Asimplenumericalmodelintwodimensions(2d)basedonmoleculardiffu-sionindisorderedsystemscoupledwithenzymaticreac-tionisproposedhere.Thedisorderedsystemismod-eledbypercolationclusters[12].Itispredictedthattherateofadiffusion-limitedenzyme-catalyzedreactionwillexperienceamonotonicdecreasewithincreaseinthefractionalvolumeoccupancyofthecrowdingagent.Themodelexplainsqualitativelycertainexperimentalobser-vations.
THEMODEL
Inbrief,theenzymekineticreactioninthecellcyto-plasmcanbedescribedassubstratemoleculesdiffusingthroughcrowdingmacromoleculesandbindingtotheac-tivesiteofthefreelyfloatingenzymes.Subsequentlya
productisformedifthereactionisenergeticallyfavor-ableandthisproductdiffusesthroughthesamecrowdofmacromolecules.TheclassicalMichaelis-Mentenequilib-riumenzymekineticreactionisgivenas[13]
E+S⇀↽ES→E+P
(1)
whereErepresentsenzyme,Srepresentssubstrate,PrepresentsproductandESistheintermediateenzyme-substratecomplex.
Inthepresentmodel,thereactionislimitedbydiffu-siononlyandtheformationofthetransitionstatecom-plexESisnottakenintoaccount.Theconversionofsubstratetoproductisalsoassumedtobeinstantaneous.Notethatdiffusionhastheslowesttimescaleinthisprob-lem.Hence,theaboveenzymaticreactionreducestoanirreversibleoneas
E+S→E+P.
(2)
Thefinalequilibriumstatecorrespondstoconversionofallsubstratestoproducts.AMonteCarlo(MC)al-gorithmhasbeendevelopedtostudydiffusionlimitedenzymaticreactionasinEq.2inthepresenceofinertmacromolecules.Thealgorithmisdevelopedonthe2dsquarelatticeofsizeL×L.Forsimplicity,themotionofthemacromoleculesisignoredandtheseactasimmobileandinertobstacles.Theinertobstaclesdonotinteractwitheitheramongthemselvesorwiththesubstrateorproduct.Theobstacles(O),enzyme(E),substrate(S)andproduct(P)areallrepresentedaspointparticlesinthismodel.Itisalsoassumedthatthereexistsonlyoneimmobileenzymeinthewholesystem.Theenzymeisplacedatthecenterofthelattice.Afterplacingtheenzyme,theobstaclesandthesubstratesaredistributedrandomlyoverthelatticesiteswiththeirspecifiedcon-centrationsCOandCSrespectively.Arandomnumberriscalledfromauniformdistributionofrandomnum-bersbetween0and1correspondingtoeachlatticesite.Ifr≤CS,thesiteisoccupiedwithasubstrateandifCS topif1/4 RESULTSANDDISCUSSION Classicaldiffusionofatracerparticleindisorderedsys-temshasalreadybeenstudiedextensivelyandtheresultsarewellunderstood[18].Generallythediffusionismod-eledbyrandomwalkandthedisorderedsystemismod-eledbyspanningpercolationclusters[12].Forstudyingdiffusion,aquantityofinterestistherootmeansquare 3 (a)t=212(b)t=218(c)t=220 FIG.1:Thesystemmorphologyona256×256squarelatticeisshownatthreedifferenttimes(a)t=212,(b)t=218and(c)t=220forsubstrateconcentrationCs=0.01andareafractionaf=CS+CO=0.1(CO=0.09).Theblackdotsrepresentthesubstratesandthegrayboxesrepresenttheproducts.Forclarityobstaclesarenotshown.Theenzymeisrepresentedbyacrossatthecenterofthelattice.Productsareformedduetotheenzymaticreactionandinthelongtimelimitalmostallthesubstratesareconvertedintoproducts. (rms)distancer(t)coveredbythediffusingparticleintimet.Thermsdistancer(t)in2disgivenby r2(t)=4D×t2k (3) whereDisthediffusivityofthesystem.Theexponentkhasavalue1/2fordiffusiononaregularlatticeinthet→∞limit.Onthepercolationcluster,diffusionisfoundtobeanomalousandthevalueofkbecomeslessthan1/2[18].Theenzymekineticreactioninsideacellcytoplasminvolves(i)diffusionofalargenumberofsub-stratemoleculesthroughtherandomstructureofinertmacromolecules,(ii)reactionwiththeenzymetohaveproducts,and(iii)finallydiffusionofproductsfromtheenzymethroughthesamemacromolecularcrowding.Thediffusionprocessinvolvedhereisthenacollectivemo-tionofalargenumberofparticlesinpresenceofdisorderwhichisacomplicatedprocessthandiffusionofasingletracerparticleinadisorderedmedium.Self-diffusionisexpectedtoplayanontrivialrolealongwiththediffu-sionofSorPinpresenceofdisorderinthesesystems.Inordertocheckwhethertheenzymekineticreactionconsideredhereisdiffusionlimitedornot,oneneedstoanalyzethethediffusivebehaviorofeitherthesubstratesortheproducts.Tocalculatetheaveragediffusionlengthoftheproductparticles,thecoordinates{xi(t),yi(t)}ofeachproductiisrecordedwithtimet.Timeismeasuredstartingfromthebirthofaproduct.Thermsdistancer(t)traveledintimetisthencalculatedasr2(t)= 1 system.However,inordertocheckthediffusivebehav-ioroftheparticlesoneneedstoestimatetheexponentkdefinedinEq.3.Thelocalslopekt=dlogofthecurvelogt)versuslog2r(t)/dlog2tployingcentraldifference2r(method.2tisdeterminedbyem-InFig.2(b)and(c),ktisplottedagainsttimetfortwodifferentsubstratecon-centrationsCS=0.10(b)andCS=0.01(c)forthesamesetofareafractionsafasinFig.2(a).Thevalueofktsaturatesto1/2startingfromasmallervalueasttendstoalargevalue.Thus,acrossoverfromsub-diffusivetodiffusivebehaviorhasoccurredforallareafractionsinthelongtimelimit.Inthecaseoflowsubstratecon-centrationCs=0.01andhighareafractionaf=0.4,ktshowscertainanomalousbehavior.Notethat,atthispa-rameterregimethemacromolecularconcentrationis0.39whichisjustbelow1−pc≈0.41sincethepercolationthresholdfora2dsquarelatticeispc≈0.59.Theemptysitesprovidestheconnectivityforthesubstratemoleculesalloverthelattice.However,pcisdefinedonainfinitelylargesystem.Forasmallersystem,evenattheconcen-trationof0.39theconnectivityofemptysitesmaybelostforsomeoftheensemblesconsidered.Consequently,theproductmaybetrappedinalocalizedregionaroundtheenzymeandthismaybethereasonbehindtheanomalousbehaviorobservedinthisparameterregime. Sincetheparameterregimehereislimitedbydiffu-sion,theenzymekineticreactionisthenexpectedtobediffusionlimited.Duetotheenzymekineticreaction(giveninEq.2)thesubstratesareconvertedtoprod-uctsintimewithunitprobabilityontheirencounter.Inordertocharacterizetheenzymekineticreaction,thenumberofproductsNParecountedasfunctionoftimet,theMCtimestep,fordifferentsubstrateconcentra-tionsCSandareafractionsaf=CS+CO.InFig.3,theproductnumbersNPisplottedagainsttimetfordifferentareafractionsafwithCS=0.01.Initially,NPincreaseslinearly,thenslowsdownandfinallysaturatesinthelongtimelimit.Forlowareafraction,itcanbeseenthatthereactionisalmostcompletei.e.;mostofthesubstratesgiveninitially,NS(0)=CS×L2≈655,areconvertedtoproductsexponentiallyasinclassicalequi-libriumMichaelis-Mentenkineticsthoughinthepresentmodelanon-equilibriumkineticsisconsidered.However,notethatthereisaconsiderabledecreaseintheproductyieldwithincreaseinareafractionandtheirprofilesarefoundnottofollowanexponentialincrease.Ithasal-readybeenpredictedbynumericalsimulationsthatclas-sicalMichaelis-Mentenkineticsmaynotapplytoenzy-maticreactionsincrowdedmedia[19].Ina1dmodelofreactiondiffusionwithdisorder,DoussalandMonthus[20]alsofoundlargetimedecayinthespeciesdensityviarealspacerenormalizationgroupcalculations.Themacromolecularcrowdingthencouldhaveaconsiderableandnontrivialeffectontheenzymaticreactionrate.Initialrateofenzymaticreactionsdeterminesmostofthemolecularprocessandthusisanimportantquantity 4 800 aCS=0.01 af=0.1f=0.2af=0.3pNaf=0.4 400 005 t/10 5 10 FIG.3:PlotofnumberofproductsNPversustimetfordifferentareafractionsaf=CS+COkeepingsubstratecon-centrationconstantatCS=0.01. toestimate.Sincenon-equilibriumenzymaticreactionisconsideredhere,thereactionrateRisdefinedastheratioofthenumberofproductsNPtotimetfor10%conversionofthesubstrates.Risthensampleaveraged.AsimilaranalysishasalsobeenperformedforNPver-sustplotscorrespondingtoCS=0.1fordifferentareafractionsaf.InFig.4(a),thenormalizedreactionrateRn=R/CSisplottedagainstobstacleconcentrationCOfortwodifferentsubstrateconcentrationsCS=0.01(cir-cles)andCS=0.1(squares).Notethat,areafractionaf=CS+COisnotagoodparametertostudythere-actionratesinceafwillremainfiniteforfiniteCSevenatCO=0.Intheinset,RnisalsoplottedagainstCOinsemilogarithmicscale.Therearefewthingstonotice.First,thereactionrateisdecreasingwiththeincreaseinobstacleconcentrationCOinanonlinearfashion.Sec-ond,thereactionratesaredifferentforaparticularCOevenafternormalizingbythesubstrateconcentrationCS.Third,thereisamonotonicdecreaseofln(Rn)forsmallCOanddeviatesfromlineardecreaseforlargeCO.Thedecreaseinreactionratewithincreasingcrowdingcon-centrationisexpectedandalsoobservedinexperiments[10,22].However,thedependenceoftherateonthecrowdingconcentrationisdifferentformthepredictionmadebyMinton[5]inthetransitionstateaswellasdif-fusionlimitedenzymaticreactioninwhichahumpintheln(Rn)versusCOcurveisexpectedforanintermediateCO.Fourth,thenormalizedreactionrateisgoingtozeroasCOapproaches1−pc≈0.41.BeyondCO=0.41,theobstaclescouldblockthespanningclustersoftheemptysites.Consequentlytheenzymaticreactionwillbelocal-izedandthereactionrateisexpectedtogotozero.Theaboveobservationscanqualitativelybeunder-stoodintermsofdiffusionandpercolationphenomena.AsCOincreases,diffusivityisexpectedtodecreasebe-causeofthecrowdingduetoobstacles.Theinfluenceof (a) CS=0.01CS0.2 S=0.10 C/R=nR0.1−1 )nR(nl−40.0 CO 0.40.00.0 0.2 C0.4 O 0.2 (b) CS=0.01CS=0.10 D0.1 0.00.0 0.2 C0.4 O FIG.4:(a)PlotofnormalizedreactionrateRn=R/CSagainstCOfortwodifferentCSvalues0.01(circles)and0.1(squares).ln(Rn)isplottedagainstCOforthesameCSvaluesintheinset.ThesamesymbolsetfordifferentCSvaluesisused.(b)PlotofdiffusivityDagainstCOforCS=0.01andCS=0.1.Thesamesymbolsetof(a)isused. macromolecularcrowdingonthediffusionofsoluteshasbeeninvestigatedinrecentexperimentsutilizingdifferentcrowdingagentsandareducedsolutediffusioncoefficientwasobservedwithincreasingsizeandconcentrationofcrowdingmacromolecules[21].AnestimateofdiffusivityD=(dr2(t)/dt)/4(asgiveninEq.3)hasbeenmadeuti-lizingthedataofdiffusionlengthr(t)fordifferentsetsofsubstrate(CS)andobstacle(CO)concentrations.InFig.4(b),DisplottedagainstCOforCS=0.01(circles)andCS=0.10(squares).Likereactionrate,diffusivityDisalsostudiedasafunctionofobstacleconcentrationCOinsteadofaf.ItcanbeseenthatDalsodecreaseswithCOinanonlinearfashion.Firstofall,itisinter-estingtonotethatthewholedependenceofRnonCOisisinaccordancewiththebehaviorofDwithCO.Theenzymaticreactionrateinthisparameterregimeisthere-foremostlygovernedbydiffusionandcanbeconsideredapurelydiffusionlimitedenzymaticreaction.Itisim-portantnowtoconsiderthelowCOvalues,especiallythecaseofCO=0.ForlowCOvalues,DisslightlylessforCS=0.1thanthatofCS=0.01forthesameCO.ThisslightdecreaseinDisduetodiffusionthroughtheselfcrowdingathigherCS.Ontheotherhand,the 5 reactionrateatzeroobstacleconcentrationisexpectedtobeproportionaltoCSandDandRcanbeobtainedasR≈CS×D.ItcanbeseenthatthenormalizedreactionrateRnobtainedhereisveryclosetothecorre-spondingvaluesofDatCO=0forboththeCSvalues.AtCO=0,theselfdiffusionofthesubstratemoleculeseventuallydeterminesthereactionratesandmightberesponsibleforaslightdecreaseinRnforCS=0.1withrespecttoCS=0.01asseeninFig.4(a).TheeffectofCSinabsenceofobstacleshasbeenverifiednumericallyforseveralhighervaluesofCSandaconsiderableeffectofself-crowdinghasbeenobservedonthereactionrateaswellasondiffusivity.Notethat,RnvaluesareslightlygreaterthanDforalmostallvaluesofCOasitcanbeseenbycomparingFig.4(a)and(b).Thismighthavehappenedfirstlyduetothefactthattheinitialyieldoc-curonlyfromthelocallyavailablesubstratemolecules.Thediffusionlengthofthesesubstratemoleculesareverylessincomparisontotheexpecteddiffusionlength.Sec-ondly,oneshouldnotethattheinitialreactionrateforagivenCOhastobecalculatedkeepingthesubstrateconcentrationCSfixed.However,inthepresentmodelthesubstrateconcentrationisdecreasingwithtimeasthesubstratesarebeingconvertedintoproducts.TheeffectwillbepredominantforlowCSandsmallsystemsize.Consequentlytheratedeterminationwillbeerroneousinthet→0limitduetolowyield.Hence,extremecarehastobetakenindeterminingtheinitialreactionrate.Theenzymaticreactionconsideredhereisthecompletelydiffusionlimitedandtheresultsobtainedareexplainableintermsofdiffusionindisorderedsystems.Itisthereforeintriguingtonotethatsuchasimplemodelofenzymaticreactionbasedondiffusionandpercolationphenomenaonly,isabletoexplainqualitativelytheexperimentalob-servations[10,22]aswellasresultsobtainedincompli-catedmodels[5,6,7,8,9].Hence,diffusionisobservedtobeplayingthecrucialroleindeterminingtheenzymaticreactionrates. Itshouldbeemphasizedherethatenzymaticreactionsoccurin3-dimensionalspaceinlivingsystemswhereasthesimulationisperformedin2-dimensionshere.Thesimulationresultsobtainedhereagreequalitativelywiththeexperimentalobservationsanditisexpectedthatthefeaturesofthemodelwillberetainedinhigherdimen-sionsalso.Themaindifficultyin3dsimulationisinpar-allelupdatingofalargenumberofsubstrateandproductmoleculesduringtimeevolutionthroughalargenumberofMCtimesteps.Timerequiredforthefullconversionofsubstratetoproductincreasesexponentiallywiththenumberofmolecules(NS=CS×Ld)whichstronglyde-pendsonthedimensionalityofspaceforafixedsubstrateconcentration.However,forquantitativecomparisonoftheresultsobtainedinsimulationwiththatofexperi-ments,themodelmustbeextendedtothreedimensions.Thebiochemicaleventsinthedenselycrowdedmito-chondrialmatrix,thesiteforTCAcycleandfattyacid oxidationpathwayarelargelygovernedbylargemacro-moleculesofvarioussizes.Itisthusimportanttoin-vestigatetheinfluenceofcrowdingasexertedbymacro-moleculesofdifferentsizes.Adecreaseinreactionratehasbeenobservedinexperimentsforvaryingobstaclesizeskeepingtheobstacleconcentrationconstant[22].Itseemsthatthecomplexinteractionbetweenobstaclesandthesubstrateissizedependentandmightbegov-erningtheenzymaticreactionrate.Itisexpectedthatthediffusionofsubstratesacrosslargemacromoleculesmightbeslowduetothecomplexinteractionswiththeobstacles.Inthepresentmodelofenzymaticreaction,thiscomplexinteractionbetweenobstacleandsubstratemaybeincorporatedbyintroducingaresidencetimeforthesubstratemoleculesateachencounterwiththeobsta-cle.Aslowingdowninthereactionratewithincreasingresidencetimehasbeenobservedinthesimulationinac-cordancewiththeexperimentalresults[22].Thedetailswillbereportedelsewhere. SUMMARY Theeffectofmacromolecularcrowdingontheenzy-maticreactionrateshasbeenmodeledbyaMCalgo-rithmbasedondiffusionandpercolationphenomena.Thesubstrates,products,obstaclesandenzymeallarerepresentedbypointparticles.Asingleimmobileen-zymeisconsideredandplacedatthecenterofthelat-tice.Theobstaclesandthesubstratesaredistributedrandomlywiththeirspecificconcentrationsfollowingauniformdistributionofrandomnumbersbetween0and1.Theobstaclesremainimmobilethroughoutthesimu-lation.Itisfoundthatthereactionissolelydiffusionlim-itedundertheseconditions.Thediffusionofsubstratesandproductsaremodeledbyacollectiverandomwalk.Theproductsformgraduallyandsubsequentlyalmostallthesubstratesareconvertedintoproductsafteralongtime.Theinitialreactionratehasbeenestimatedfordifferentsubstrateandobstacleconcentrations.Thenor-malizedreactionratehasanonlineardependenceontheobstacleconcentrationandfoundslightlydependentonthesubstrateconcentration.Thedependenceofreactionrateonthesubstrateaswellasobstacleconcentrationsisthenqualitativelyunderstoodwiththehelpofdiffusionandpercolationtheory.Theresultsqualitativelyexplains 6 theexperimentalobservations. [1]ABFulton,Cell30,345(1982). [2]S.B.ZimmermanandA.P.Minton,Annu.Rev.Biophys. Biomol.Struct.22,27(1993);A.P.Minton,J.Biol.Chem.276,10577(2001). [3]S.B.ZimmermannandS.O.Trach,J.Mol.Biol.222, 599(1991). [4]M.J.Saxton,Biophys.J.66,394(1994);70,1250 (1996). [5]A.P.Minton,Biopolymers20,2093(1981). [6]R.Kopelman,J.Stat.Phys.42,185(1986);Science241, 1620(1988). [7]M.A.Savageau,J.Theor.Biol.176,115(1995). [8]D.T.Gillespie,PhysicaA188,404(1992);T.B.Kepler andT.C.Elston,Biophys.J.81,3116(2001). [9]S.SchnellandT.E.Turner,Prog.Biophys.Mol.Biol. 85,235(2004). [10]T.C.Laurent,Eur.J.Biochem.21,498(1971);A.P. MintonandJ.Wilf,Biochemistry20,4821(1981);J.R.WennerandV.A.Bloomfield,Biophys.J.77,3234(1999);N.Assad,J.B.F.N.Engberts,J.Am.Chem.Soc.125,6874(2003). [11]R.J.Ellis,TrendsBiochem.Sci.26,597(2001). [12]D.StaufferandA.Aharony,Introductiontopercolation theory(TaylorandFrancis,London)(1994). [13]K.B.Taylor,EnzymeKineticsandMechanisms,(Kluwer AcademicPublishers,TheNetherlands)(2002). [14]Z.Bajzer,M.Huzak,K.NeffandF.G.Prendergast, Croat.Chem.Acta79,437(2006). [15]A.Lin,R.KopelmanandP.Argyrakis,Phys.Rev.E53, 1502(1996). [16]F.LeyvrazandS.Redner,Phys.Rev.A46,3132(1992).[17]Y.KafriandM.J.E.Richardson,J.Phys.A32,3253 (1999). [18]P.G.deGennes,LaRecherche,7,916(1976);S.Havlin andD.Ben-Avraham,Adv.Phys.36,695(1987);S.B.SantraandW.A.Seitz,Int.J.Mod.Phys.C11,1357(2000). [19]H.Berry,Biophys.J.83,1891(2002). [20]P.LeDoussalandC.Monthus,Phys.Rev.E60,1212 (1999). [21]R.Swaminathan,C.P.HoangandA.S.Verkman, Biophys.J.72,1900(1997);A.S.Verkman,TrendsBiochem.Sci.27,27(2002);E.DautyandA.S.Verk-man,J.Mol.Recognit.17,441(2004). [22]L.Homchaudhuri,N.SarmaandR.Swaminathan, Biopolymers83,477(2006). 因篇幅问题不能全部显示,请点此查看更多更全内容