Acriticalanalysisoftheeigenvaluemethod
usedtoderiveprioritiesinAHP
CarlosA.BanaeCosta
aa,b,*,1,Jean-ClaudeVansnick
cCEG-IST,CentreforManagementStudiesofIST,TechnicalUniversityofLisbon,Lisbon,PortugalbDepartmentofManagement-OperationalResearchGroup,LondonSchoolofEconomics,UK
c´deMons-Hainaut,F.W.S.E.,PlaceduParc,20-7000Mons,BelgiumUniversite
Availableonline2January2007
Abstract
AlotofresearchhasbeendevotedtothecriticalanalysisoftheAnalyticHierarchyProcess(AHP),fromvariousper-spectives.However,asfarasweknow,noonehasaddressedafundamentalproblem,discussedinthispaper,concerning
themeaningofthepriorityvectorderivedfromtheprincipaleigenvaluemethodusedinAHP.TheroleofAHP’sconsis-tencyratioisalsoanalysed.
Ó2006ElsevierB.V.Allrightsreserved.
Keywords:Decisionanalysis;AnalyticHierarchyProcess;Eigenvaluemethod;Conditionoforderpreservation
1.IntroductionandobjectiveoftheanalysisSinceSaaty(1977,1980)introducedtheAnalyticHierarchyProcess(AHP),manyapplicationsinreal-worlddecision-makinghavebeenreported(cf.Zahedi,1986;Goldenetal.,1989;Shim,1989;Var-gas,1990;Saaty,2000;FormanandGass,2001;GoldenandWasil,2003;VaidyaandKumar,2006).Inparallel,AHPhasoftenbeencriticisedintheliterature,fromseveralperspectives(see,forexample,WatsonandFreeling,1982,1983;BeltonandGear,1983,1985;French,1988;Holder,1990;
*Correspondingauthor.Address:CEG-IST,CentreforMan-agementStudiesofIST,TechnicalUniversityofLisbon,Lisbon,Portugal.
E-mailaddresses:c.bana@lse.ac.uk(C.A.BanaeCosta),vansnick@umh.ac.be(J.-C.Vansnick).1ThisauthorwassupportedbyPOCTIandLSE.
Dyer,1990a,b;BarzilaiandGolany,1994;SaloandHa¨ma¨la¨inen,1997).AdebateaboutthemaincriticismsofAHPcanbefoundinBeltonandStew-art(2002)andSmithandvonWinterfeldt(2004).Saatyhasfrequentlycontestedthesecritics(see,forexample,Saatyetal.,1983;SaatyandVargas,1984;Saaty,1990,1997;SaatyandHu,1998)and,inessence,hasnotmodifiedhisoriginalmethod(seeSaaty,2005).Independentlyofouragreementwithsomeofthosecriticisms,theanalysisofwhichisbeyondthescopeofthispaper,webelievethattheelicitationofpairwisecomparisonjudgementsandthepossibilityofexpressingthemverballyarecor-nerstonesofthepopularityofAHP.
Thereis,however,akeyproblemthat,asfarasweknow,hasneverbeforebeenaddressedinthelit-erature.Itconcernsthemeaningofthepriorityvec-torderivedfromtheprincipaleigenvaluemethodusedinAHP.The‘‘AHPusesaprincipaleigenvalue
0377-2217/$-seefrontmatterÓ2006ElsevierB.V.Allrightsreserved.doi:10.1016/j.ejor.2006.09.022
C.A.BanaeCosta,J.-C.Vansnick/EuropeanJournalofOperationalResearch187(2008)1422–14281423
method(EM)toderivepriorityvectors’’(SaatyandHu,1998,p.121).FollowingSaaty,thepriorityvec-torhastwomeanings:‘‘Thefirstisanumericalrankingofthealternativesthatindicatesanorderofpreferenceamongthem.Theotheristhattheorderingshouldalsoreflectintensityorcardinalpreferenceasindicatedbytheratiosofthenumeri-calvalues(...)’’(Saaty,2003,p.86).Thissecondmeaningrequires,inourview,thattheseratiospre-serve,wheneverpossible,theorderoftherespectivepreferenceintensities,whichisnotalwaysthecaseforAHPpriorityvectors.Indeed,theratiosofAHPpriorityvaluescanviolatethisorderalbeittheratiosofalternativepriorityvalues,derivedfromthesamepairwisecomparisons,preserveit.Fromourdecision-aidperspective,thisisabasicdrawbackofAHP.Considerthefollowingcondition:
ConditionofOrderPreservation(COP):Forallalternativesx1,x2,x3,x4suchthatx1dominates2x2andx3dominatesx4,iftheevaluator’sjudgementsindicatetheextenttowhichx1dominatesx2isgreaterthattheextenttowhichx3dominatesx4,thenthevectorofprioritieswshouldbesuchthat,notonlyw(x1)>w(x2)andw(x3)>w(x4)(preserva-tionoforderofpreference)butalsothatw(x1)/w(x2)>w(x3)/w(x4)(preservationoforderofinten-sityofpreference).
Forinstance,ifx1stronglydominatesx2andx3moderatelydominatesx4,itisfromourviewfunda-mentalthat,wheneverpossible,thevectorofprior-itieswbesuchthatw(x1)/w(x2)>w(x3)/w(x4);indeed,thesejudgementsindicatethattheintensityofpreferenceofx1overx2ishigherthantheinten-sityofpreferenceofx3overx4.
WewillprovewithsimpleexamplesthattheAHPpriorityvectordoesnotnecessarilysatisfytheCOP,eventhoughitispossibletorespectthiscondition.Insuchcases,alternativepriorityvaluesthatsatisfyCOPcaneasilybefoundbyamathe-maticalprogramincludingCOPconstrains.Theparticularprogramthatweusedisnotimportantinthescopeofthispaper,sinceourintentionisnotatalltosuggestanalternativeproceduretoAHP.
NotethatanumericalscalethatsatisfiestheCOPdoesnotalwaysexist.Inourconstructiveperspec-tive,itisessentialtodetectthesesituationsanddis-
2Inthispaper,‘‘dominance’’isusedinthesenseof‘‘strictpreference’’.
cussthemwiththeevaluatorbeforeproposinganypriorityscale.AcomplementaryobjectiveofthispaperistoanalyseiftheconsistencyratiousedinAHPcanrevealsuchsituations.
Therestofthispaperisorganisedinthefollowingmanner:inSection2,wereviewtheprincipaleigen-valuemethodusedinAHPtoderivepriorityvectors;inSections3and4,wepresentsomeexamplesinwhichitwouldbepossibletosatisfytheCOP,how-ever,theAHPpriorityvectorsviolateit;inSection5,weshowthattheAHPconsistencyratioisnotsuit-ablefordetectingtheexistence(orthenon-existence)ofanumericalscalesatisfyingtheCOP;abriefconclusionispresentedinSection6.
2.Overviewoftheprincipaleigenvaluemethod(EM)LetX={x1,x2,...,xn}beasetofelementsand}‘‘apropertyorcriterionthattheyhaveincommon’’(Saaty,1996,p.24)–forexample,Xcouldbeasetofcarsand}theircomfort.Howcanwehelpaper-sonJquantifytherelativepriority(orimportance)thattheelementsofXhaveforher,intermsof}?TheEMusedinAHPtoderiveprioritiesfortheelementsofXrequiresthatanumber–denotedwij–beassignedtoeachpairofelements(xi,xj)repre-senting,intheopinionofJ,theratioofthepriorityofthedominantelement(xi)relativetothepriorityofthedominatedelement(xj)(Saaty,1997).Jisinvitedtocomparetheelementspairwiseandcanexpressherjudgementsintwodifferentways:•eithernumerically,bygivingarealnumberbetween1(inclusive)and10(exclusive)(Saaty,1989)–forexample,ifxiisaChevroletandxjaLadaandifJjudgestheChevrolettobesixtimesmorecomfortablethantheLada,thanwij=6;
•orverbally,bychoosingoneofthefollowingexpressions:equalimportance,moderatedomi-nance,strongdominance,verystrongdomi-nance,extremedominance,oranintermediatejudgementbetweentwoconsecutiveexpressions;eachverbalpairwisecomparisonelicitedisthenautomaticallyconvertedintoanumberwijasexhibitedinTable1–forexample,ifxiisaPeu-geotandxjanOpelandifJjudgesthePeugeottobemoderatelymorecomfortablethantheOpel,thenwij=3.
Duringtheelicitationprocess,apositiverecipro-calmatrix,inwhicheachelementx1,x2,...,xnofX
1424C.A.BanaeCosta,J.-C.Vansnick/EuropeanJournalofOperationalResearch187(2008)1422–1428
Table1
Converting‘‘verbaljudgements’’into‘‘numbers’’VerbalexpressionsaCorrespondingnumbersEqual
1Equaltomoderate2Moderate
3Moderatetostrong4Strong
5Strongtoverystrong6Verystrong
7Verystrongtoextreme8Extreme
9
aInSaaty(1996,2005)theverbalexpressions‘‘equaltomod-erate’’,‘‘moderatetostrong’’,‘‘strongtoverystrong’’and‘‘verystrongtoextreme’’arereplacedby‘‘weak’’,‘‘moderateplus’’,‘‘strongplus’’and‘‘very,verystrong’’,respectively.
isassignedonelineandonecolumn,canbefilledbyplacingthecorrespondingnumberattheintersec-tionofthelineofxiwiththecolumnofxj8>>>wijifxidominatesxj;<1=wijifxjdominatesxi
;
>>>:
1ifxidoesnotdominatexjandxjdoesnotdominatexi:Forexample,assumingthatforalli,j2{1,2,...,n}xidominatesxjifandonlyifi B 1w12ÁÁÁw1n 1W¼BB 1=w12 1ÁÁÁw2nCBCBB ÁÁÁÁÁÁÁÁÁÁÁÁCC@ÁÁÁ ÁÁÁÁÁÁÁÁÁCC: 1=wA1n1=w2nÁÁÁ1Inordertoassigna‘‘priority’’(ora‘‘weight’’)toeachelementxi–anumericalvaluethatwewilldenotew(xi)–theprincipaleigenvaluekmaxofmatrixWanditsnormalisedeigenvectorarecalcu-lated:thecomponentsofthisvectorarethew(xi).Thisprocedurehasaveryinterestingproperty:ifthejudgementsofJaresuchthatwijÆwjk=wikforalli kmaxÀn/(nÀ1)andarandomindexRI(ofordern)iscalculatedastheaverageoftheCIofmanythousandsreciprocalmatrices(ofordern)randomlygeneratedfromthescale1to9,withreciprocalsforced.ThevaluesofRIformatricesofsize1,2,...,10canbefoundinSaaty(2005,p.374).TheratioofCItoRIforthesameordermatrixiscalledtheconsistencyratioCR.AccordingtoSaaty(1980,p.21),‘‘aconsistencyratioof0.10orlessisconsideredacceptable’’.Thatis,aninconsistencyisstatedtobeamatterofconcernifCRexceeds0.1,inwhichcasethepairwisecomparisonsshouldbere-examined. Iftheelementsaretobecomparedaccordingtoseveral},theAHPproposesthatahierarchybebuiltwiththegeneralgoalontop,theelementsatthebottomandthe}atintermediatelevels.Theproceduredescribedaboveisthenrepeatedlyappliedbottom-up:tocalculateavectorofprioritiesfortheelementswithrespecttoeach}situatedatthebottomintermediatelevel;tocalculateavectorofweightsforeachclusterof}atthedifferentlev-els.Allthisjudgementalinformationisthensyn-thesisedfrombottomtotopbysuccessiveadditiveaggregations,inordertoderiveavectorofoverallprioritiesfortheelements. 3.ExamplesinwhichtheCOPisviolatedbythepriorityvectorderivedfromtheEM WepresentinthissectiontwoexamplesprovingthattheCOPmaybeviolatedbythepriorityvectorgivenbytheEMforeachoneofthem,althoughscalesexistthatdorespectit.Example1involvesverbaljudgementsandExample2involvesnumeri-caljudgements. Example1(Caseofverbaljudgements).LetX={x1,x2,x3,x4,x5}beasetofalternativesbetweenwhichthefollowingpairwisecomparisonswereformulatedbyapersonJ: {x1,x2}:x1dominatesx2,equaltomoderatedominance. {x1,x3}:x1dominatesx3,moderatedominance.{x1,x4}:x1dominatesx4,strongdominance.{x1,x5}:x1dominatesx5,extremedominance.{x2,x3}:x2dominatesx3,equaltomoderatedominance. {x2,x4}:x2dominatesx4,moderatetostrongdominance. {x2,x5}:x2dominatesx5,extremedominance. C.A.BanaeCosta,J.-C.Vansnick/EuropeanJournalofOperationalResearch187(2008)1422–14281425 {x3,x4}:x3dominatesx4,equaltomoderatedominance. {x3,x5}:x3dominatesx5,verystrongtoextremedominance. {x4,x5}:x4dominatesx5,verystrongdominance.FromTable1,thecorrespondingpositivereci-procalmatrixis0 123B 12B1=2 B B1=31=21BB @1=51=41=2 54211=7 19C9CC8CCC7A1 wÃðx1Þ¼0:385;wÃðx2Þ¼0:275;wÃðx3Þ¼0:195;wÃðx4Þ¼0:125;wÃðx5Þ¼0:020; respectstheCOP,asshowninTable2.LetusalsopointoutthatthevalueoftheconsistencyratioforthejudgementsinExample1is0.05,signifi-cantlysmallerthanthe0.10threshold;therefore,inAHP’sperspectivethejudgementsneednotberevised. Example2(Caseofnumericaljudgements).LetX={x1,x2,x3,x4}beasetofalternativesbetweenwhichthefollowingpairwisecomparisonswerefor-mulatedbyapersonJ:{x1,x2}:{x1,x3}:{x1,x4}:{x2,x3}:{x2,x4}:{x3,x4}: x1x1x1x2x2x3dominatesdominatesdominatesdominatesdominatesdominates x2x3x4x3x4x42.5times.4times.9.5times.3times.6.5times.5times. 1=91=91=8 forwhichthenormalisedeigenvectorcorrespondingtoitsprincipaleigenvalueis 10 0:426 CB B0:281C CB B0:165C: CB CB @0:101A0:027Consequently,giventhejudgementsofJ,thepri-oritiesobtainedthroughtheEMarewðx1Þ¼0:426;wðx2Þ¼0:281;wðx3Þ¼0:165;wðx4Þ¼0:101;wðx5Þ¼0:027: Then,inparticular,w(x1)/w(x4)%4.218andw(x4)/w(x5)%3.741,thatis,w(x1)/w(x4)>w(x4)/w(x5).GiventhatJjudgedthatx4verystronglydominatesx5andx1stronglydominatesx4,thepri-orityvectorgivenbytheEMviolatestheCOP.Yet,forexample,thescalew*Table2 Example1–valuesoftheratiosw*(xi)/w*(xj)PossibleverbaljudgementsEqualtomoderateModerate ModeratetostrongStrong StrongtoverystrongVerystrong VerystrongtoextremeExtreme Thecorrespondingpositivereciprocalmatrixis01B1=2:5BB @1=41=9:5 2:511=31=6:5 4311=5 19:56:5CCC5A1 forwhichthenormalisedeigenvectorcorrespondingtoitsmaximaleigenvalueis010:533B0:287CBCBC:@0:139A0:041 (xi,xj)pair(s)andrespectivew*(xi)/w*(xj)ratios(x1,x2):(x1,x3):(x2,x4):(x1,x4):; (x4,x5):(x3,x5):(x2,x5): 1.40(x2,x3):1.41(x3,x4):1.561.972.203.08 6.259.75 13.75(x1,x5):19.25 1426C.A.BanaeCosta,J.-C.Vansnick/EuropeanJournalofOperationalResearch187(2008)1422–1428 Table3 Example2–valuesofwijandw(xi)/w(xj) wijw(xi)/w(xj){x1,x4}9.513{x2,x4}6.57{x3,x4}53.39{x1,x3}43.83{x2,x3}32.06{x1,x2} 2.5 1.86 Consequently,giventhejudgementsofJ,thepri-oritiesobtainedthroughtheEMarewðx1Þ¼0:533; wðx2Þ¼0:287;wðx3Þ¼0:139;wðx4Þ¼0:041: Foralli,j2{1,2,3,4}suchthati wà ðx1Þà à à wÃðx¼12>wðx2ÞÞ¼8>wðx3Þwðx1Þ wÃðx¼4>4ÞwÃðx44ÞwÃðx3Þ ¼3>wÃðx2Þwà ðx¼2>wÃðx1Þ ÃÞ ¼1:5:3Þwðx2Moreover,thevalueoftheconsistencyratiofor thejudgementsinExample2is0.05,significantlysmallerthanthe0.10threshold;thereforeinAHP’sperspectivethejudgementsneednotberevised.4.AnalysisofoneofSaaty’sexamples Example3.Inthissection,weanalysetheviolationoftheCOPinoneoftheexamplespresentedin Saaty(1977,pp.254–256)andSaaty(1980,pp.40–41)toempiricallyvalidatetheEM.WerefertotheexampleofpairwisecomparisonsoftheGNPofseveralcountries,inwhich,foragivenmatrixofverbaljudgements,theprioritiesgivenbytheAHPareremarkablyclosetothenormalisedGNPvalues.Thecountriesare(Saaty’snotation)‘‘US,USSR,China,France,UK,JapanandW.Germany’’andthematrixofjudgementspresentedis 0 USUSSRChinaFranceUKJapanW:Germany1 USBUSSRBB1496655CBB1=4175534CCBCChinaFranceBB1=91=711=51=51=71=5CCBUKB1=61=55111=31=3CCBCJapanBB1=61=55111=31=3CC@1=51=373312CCAW:Germany 1=5 1=4 5 3 3 1=2 1 ThecorrespondingprioritiesarewðUSÞ¼0:427;wðUSSRÞ¼0:230;wðChinaÞ¼0:021;wðFranceÞ¼0:052;wðUKÞ¼0:052;wðJapanÞ¼0:123;wðW:GermanyÞ¼0:094: ThesearetheprioritiesappearinginSaaty(1980),whicharealittledifferentfromthoseinSaaty(1977):0.429,0.231,0.021,0.053,0.053,0.119,and0.095,respectively.Nevertheless,inbothofthesepriorityvectorsthesamefiveviolationsoftheCOPcanbeobserved.Wewillanalysetwoofthesehereafter. (1)Accordingtothematrixofjudgements,US dominatesUSSR(4times)morethanJapandominatesFrance(3times).But,w(US)/w(USSR)%1.857andw(Japan)/w(France)%2.365,thatis,w(US)/w(USSR) dominatesChina(7times)morethanUSdominatesUK(6times).But,w(Japan)/w(China)%5.857andw(US)/w(UK)%8.212,thatis,w(Japan)/w(China) 1427 Table4 VerificationoftheCOPPossibleverbal(xi,xj)pair(s)andrespectivew*(xi)/judgementsw*(xj)ratios Equaltomoderate(Japan,W.Germany):1.23Moderate (W.Germany,France):1.38(W.Germany,UK):1.38(Japan,France):1.70(Japan,UK):1.70(USSR,Japan):1.85Moderatetostrong(US,USSR):1.91 (USSR,W.Germany):2.28Strong (USSR,France):3.14(USSR,UK):3.14(US,Japan):3.54(UK,China):3.63(France,China):3.63(US,W.Germany):4.36Strongtoverystrong(US,France):6.00(US,UK):6.00Verystrong(Japan,China):6.16(USSR,China):11.42VerystrongtoB extremeExtreme (US,China):21.79 wÃðUSÞ¼0:414;wÃðUSSRÞ¼0:217;wÃðChinaÞ¼0:019;wÃðFranceÞ¼0:069;wÃðUKÞ¼0:069;wÃðJapanÞ¼0:117;wÃðW:GermanyÞ¼0:095: Letusalsopointoutthatthevalueoftheconsis-tencyratioforthejudgementsofthisexampleis0.08. 5.Discussionabouttheconsistencyratio(CR)Example4.Inthissection,wepresentanexampleinwhichitisimpossibletofindanumericalscalesatisfyingtheCOPandanalysethevalueoftheCR.LetX={x1,x2,x3,x4,x5}beasetofalternativesbetweenwhichthefollowingpairwisecomparisonjudgementswereformulatedbyapersonJ:{x1,x2}:x1dominatesx2,equaltomoderatedominance. {x1,x3}:x1dominatesx3,strongdominance.{x1,x4}:x1dominatesx4,verystrongdominance. {x1,x5}:x1dominatesx5,extremedominance.{x2,x3}:x2dominatesx3,equaltomoderatedominance. {x2,x4}:x2dominatesx4,moderatedominance.{x2,x5}:x2dominatesx5,verystrongdominance.{x3,x4}:x3dominatesx4,moderatedominance.{x3,x5}:x3dominatesx5,strongdominance.{x4,x5}:x4dominatesx5,equaltomoderatedominance. Forthissetofjudgements,itisimpossibletosatisfytheCOP.Indeed,oneshouldsimultaneouslyhave: (1)w(x1)/w(x3)>w(x2)/w(x4),because,according toJ’sjudgements,x1dominatesx3(strongdominance)morethanx2dominatesx4(mod-eratedominance),and (2)w(x3)/w(x4)>w(x1)/w(x2),because,according toJ’sjudgements,x3dominatesx4(moderatedominance)morethanx1dominatesx2(equaltomoderatedominance).Thisisimpossiblebecausetheproduct,membertomember,ofthesetwoinequalitiesgivesw(x1)/w(x4)>w(x1)/w(x4). Inourview,thisshowsthatweareinfaceofarealcaseofjudgementalinconsistencybecause,contrarytoExamples1–3,thesetofjudgementsinthepresentexampleisincompatiblewithanumer-icalrepresentationthatguaranteesorderpreserva-tion.Andyet,thevalueoftheCRcorrespondingtothesejudgementsisverysmall(0.03),whichmeans,intheAHP’sperspective,thatthesejudgementswouldnotnecessitatetoberevised.Moreover,0.03issmallerthanthevaluesoftheconsistencyratiosforExamples1–3(0.05,0.05and0.08)inwhich,asshowninSections3and4,scalesexistthatsatisfytheCOP,unliketothepresentexampleinwhichaninconsistencyproblemundoubtedlyexists.ThisshowsthattheCRusedinAHPisnotsuitablefordetectingtheexistence(orthenon-existence)ofanumericalscalesatisfyingtheCOP.6.Conclusion Inthisarticle,wehaveaddressedthefoundationsofAHP,byanalysingtheeigenvaluemethod(EM)usedtoderiveapriorityvector.Ourmainconclu-sionisthat,althoughtheEMisveryelegantfromamathematicalviewpoint,thepriorityvector 1428C.A.BanaeCosta,J.-C.Vansnick/EuropeanJournalofOperationalResearch187(2008)1422–1428 derivedfromitcanviolateaconditionoforderpres-ervationthat,inouropinion,isfundamentalindecisionaiding–anactivityinwhichitisessentialtorespectvaluesandjudgements.Inlightofthat,andindependentlyofallothercriticismspresentedintheliterature,weconsiderthattheEMhasaseri-ousfundamentalweaknessthatmakestheuseofAHPasadecisionsupporttoolveryproblematic.AsSaaty(2005,p.346)pointsout,‘‘thepurposeofdecision-makingistohelppeoplemakedecisionsaccordingtotheirownunderstanding’’,and‘‘...methodsofferedtohelpmakebetterdecisionsshouldbeclosertobeingdescriptiveandconsider-ablytransparent’’. Finally,itisworthwhiletonotethatthecriticismoftheEM,presentedinthispaper,isalsovalidforanyothermethodthathasbeen(ormaybe)conceivedtoderiveavectorofprioritiesfromapairwisecomparisonmatrixonthebasisofamath-ematicaltechniquethatdoesnotintegratewhatwecalltheCOP,ordoesnotautomaticallyguaranteeitssatisfaction.References Barzilai,J.,Golany,B.,1994.AHPrankreversal,normalizationandaggregationrules.INFOR(32),57–64. Belton,V.,Gear,A.E.,1983.OnashortcomingofSaaty’smethodofanalytichierarchies.Omega11(3),228–230. Belton,V.,Gear,A.E.,1985.Thelegitimacyofrankreversal–acomment.Omega13(3),143–144. Belton,V.,Stewart,T.,2002.MultipleCriteriaDecisionAnal-ysis:AnIntegratedApproach.KluwerAcademicPublishers,Dordrecht. Dyer,J.S.,1990a.Remarksontheanalytichierarchyprocess.ManagementScience36(3),249–258. Dyer,J.S.,1990b.Aclarificationof‘RemarksontheAna-lyticHierarchyProcess’.ManagementScience36(3),274–275. Forman,E.,Gass,S.I.,2001.Theanalytichierarchyprocess:Anexposition.OperationsResearch49(4),469–486. French,S.,1988.DecisionTheory:AnIntroductiontotheMathematicsofRationality.EllisHorwoodLimited,Chichester. Golden,B.,Wasil,E.A.,2003.Celebrating25yearsofAHP-baseddecisionmaking.ComputersandOperationsResearch30(10),1419–1497. Golden,B.L.,Wasil,E.A.,Harker,P.T.(Eds.),1989.TheAnalyticHierarchyProcess:ApplicationsandStudies.Springer-Verlag,NewYork. Holder,R.D.,1990.Somecommentsontheanalytichierarchy process.JournaloftheOperationalResearchSociety41(11),1073–1076. Saaty,T.L.,1977.Ascalingmethodforprioritiesinhierarchical structures.JournalofMathematicalPsychology15(3),234–281. Saaty,T.L.,1980.TheAnalyticHierarchyProcess.McGraw-Hill,NewYork. Saaty,T.L.,1989.Decisionmaking,scaling,andnumber crunching.DecisionSciences20(2),404–409. Saaty,T.L.,1990.AnexpositionoftheAHPinreplytothepaper ‘RemarksontheAnalyticHierarchyProcess’.ManagementScience36(3),259–268. Saaty,T.L.,1996.DecisionMakingwithDependenceand Feedback:TheAnalyticNetworkProcess.RWSPublications,Pittsburgh,PA. Saaty,T.L.,1997.Thatisnottheanalytichierarchyprocess: WhattheAHPisandwhatitisnot.JournalofMulti-CriteriaDecisionAnalysis6(6),324–335. Saaty,T.L.,2000.FundamentalsoftheAnalyticHierarchy Process.RWSPublications,Pittsburgh,PA. Saaty,T.L.,2003.Decision-makingwiththeAHP:Whyisthe principaleigenvectornecessary.EuropeanJournalofOper-ationalResearch145(1),85–91. Saaty,T.L.,2005.‘‘Theanalytichierarchyandanalyticnetwork processesforthemeasurementofintangiblecriteriaandfordecision-making’’,Process:WhattheAHPisandwhatitisnot.In:Figueira,J.,Greco,S.,Ehgott,M.(Eds.),MultipleCriteriaDecisionAnalysis:StateoftheArtSurveys.Springer,NewYork,pp.345–407. Saaty,T.L.,Hu,G.,1998.Rankingbytheeigenvectorversus othermethodsintheanalytichierarchyprocess.AppliedMathematicalLetters11(4),121–125. Saaty,T.L.,Vargas,L.G.,1984.Thelegitimacyofrankreversal. Omega12(5),513–516. Saaty,T.L.,Vargas,L.G.,Wendell,R.E.,1983.Assessing attributeweightsbyratios.Omega11(1),9–12.Salo,A.A.,Ha¨ma¨la¨inen,R.P.,1997.Onthemeasurementof preferencesintheanalytichierarchyprocess.JournalofMulti-CriteriaDecisionAnalysis6(6),309–319. Shim,J.P.,1989.Bibliographyresearchontheanalytichierarchy process(AHP).Socio-EconomicPlanningSciences23(3),161–167. Smith,J.E.,vonWinterfeldt,D.,2004.Decisionanalysisin ManagementScience.ManagementScience50(5),561–574.Vaidya,O.S.,Kumar,S.,2006.EuropeanJournalofOperational Research169(1),1–29. Vargas,L.G.,1990.Anoverviewoftheanalytichierarchyprocess anditsapplications.EuropeanJournalofOperationalResearch48(1),2–8. Watson,S.R.,Freeling,A.N.S.,1982.Assessingattribute weights.Omega10(6),582–583. Watson,S.R.,Freeling,A.N.S.,1983.Commenton:Assessing attributeweightsbyratios.Omega11(1),13. Zahedi,F.,1986.Theanalytichierarchyprocess–Asurveyofthe methodanditsapplications.Interfaces16(4),96–108. 因篇幅问题不能全部显示,请点此查看更多更全内容