J.Phys.B:At.Mol.Opt.Phys.39(2006)S637–S650doi:10.1088/0953-4075/39/15/S11
Opticallyinducedinter-particleforces:fromthebondingofdimerstoopticalelectrostrictioninmolecularsolids
DavidLAndrews1,RichardGCrispandDavidSBradshaw
NanostructuresandPhotomolecularSystems,SchoolofChemicalSciences,UniversityofEastAnglia,NorwichNR47TJ,UKE-mail:david.andrews@physics.org
Received15February2006Published24July2006
Onlineatstacks.iop.org/JPhysB/39/S637
Abstract
ThequantumelectrodynamicalformulationoftheCasimir–Polderinteractioninvitesaconsiderationofopticallyinducedinter-particleforces,whichariseinthesamelevelofperturbationtheory.Fortheobservationofsucheffects,quantitativeassessmentsofthecouplingmechanismsuggestlevelsofintensitythatarenowroutinelyavailablefrompulsedlasers.Inthispaper,atheoreticalanalysisoftheprincipalmechanismisfollowedbyadevelopmentfortwospecificsystems,chosentoillustratethebroadsignificanceandtherangeofsystemsinwhichsucheffectsmightbemanifest.ThefirstsystemisavanderWaalsdimer,alooselyboundandessentiallyisolatedmolecularpairinwhichasmallopticallyinducedshiftintheequilibriumbondlengthprovestobewellwithinthelimitsofmeasurementbymicrowaverotationalspectroscopy.Thesecondsystemillustratestheoppositeextreme,whereanopticallyinducedmodificationoftheforcesbetweendenselypackedmoleculesinthecondensedphaseisshowntoproduceanisotropicpatternsoflaser-inducedcompressionandexpansion,aneffecttermedopticalelectrostriction.Again,suchaneffectshouldbereadilymeasurable,althoughthenecessaryconditionsaresuchthatanumberofsecondaryeffectsmightalsobelikelytoarise.Theexperimentalchallengeofprecludingthosesecondaryeffectsinthecondensedphaseandunequivocallyidentifyingopticallyinducedintermolecularforcesisdiscussed.Possibleapplicationsarealsoentertained,includingopticalactuatorsfornanoscaleelectromechanicalsystems.
1.Introduction
Oneofthemostwidelycitedandbest-knownsuccessesofquantumelectrodynamics,QED,liesinitsapplicationtothedispersioninteraction,theelectromagneticcouplingbetween
1
Seniorauthor.
S637
0953-4075/06/150637+14$30.00©2006IOPPublishingLtdPrintedintheUK
S638
0000DLAndrewsetal
ssrr0000ABAB(a)(b)Figure1.Exampletime-ordereddiagramsforcalculationsof(a)theCasimir–Polderpotential,adaptedfrom[6]and(b)thelaser-inducedpotentialpresentedinthiswork.
polarizableparticles[1,2].Inthecaseofmolecules,thisinteractionoperatesuniversally,inadditiontoanycouplingassociatedwiththedirectinteractionofchargesordipoles(orindeedanyothermultipoles).TheCasimir–Polderformulaisanexampleparexcellenceshowcasingmanifestationsofretardation—anintrinsicfeatureofanytheorybasedonQED.Indeed,thestrikingandoriginallyunsuspectedmodificationtothedistancedependenceofthedispersioninteraction,whoseasymptoticformchangesfromR−6atshortrangetoR−7atlargerdistances[3,4],wasrigorouslyestablishedseveraldecadesbeforereceivingunequivocalexperimentalproof[5].Avarietyofinterpretationscanbeplacedonthedifferentmodelsassociatedwithalternativemethodsforcalculatingthefinalequation;inaformulationbasedonthePower–Zienau–WoolleyHamiltonian,thedispersioninteractionemergesfromtime-dependentperturbativecalculationsbasedonthepropagationofvirtualphotons[6].
Perturbativecalculationsofinter-particlecouplingaregenerallyperformedonabasisstateinwhichbothparticlesandtheradiationfieldareinthegroundstate.Thissystemstatecoupleswithothershort-livedstatesinwhichtheelectromagneticfieldhasanon-zerooccupationnumberforoneormoreradiationmodes.Equationsfordiagonalmatrixelementsinvokingasinglevirtualphotonleadtotheretardation-freeenergyofinteractionbetweenstaticmultipoles,theleadingcontributionbeingthefamiliardipole–dipoleinteraction.Necessarilyinvolvingbothaphotoncreationandaphotonannihilationevent,thiscalculationentailssecond-orderperturbationtheory.Thedispersioninteraction,traditionallyinterpretedasacouplingbetweenmutuallyinducedmoments,emergesfromthenextorder—afourth-orderperturbativecalculationbasedontheexchangeoftwovirtualphotons,eachcreatedatoneparticleandannihilatedattheother—asinthetime-orderedgraphoffigure1(a).Thetwovirtualquantamay,butneednot,overlapintimeastheypropagatebetweenthetwounits.
Althoughthecorrectrepresentationoflong-rangeretardationfeaturessignifiesthemostobviousvindicationofquantumelectrodynamicalmethods,thevirtualphotoninterpretationhasvalidityatalldistancesanditlendsafreshperspectivetothephysicsinvolvedintheshorterrangeR−6rangedependence(longknownasthevanderWaalsinteraction—theattractivepartoftheLennard–Jonespotential,whichislargelyresponsibleforthecohesionofcondensedphasematter).Aconsiderationofthephotonicbasisforthisinteractionsuggeststhatothereffectsmightbemanifestwhenintenselightispresent,i.e.whencalculationsareperformedonabasisstateforwhichtheoccupationnumberofatleastonephotonmodeisnon-zero.Itisimmediatelyencouragingtorecognizethatthisneednotinvokehigherordersofperturbationtheoryinordertogiveanon-vanishingresult;inprincipletheannihilationandcreationofonephotonfromtheoccupiedradiationmodecansubstituteforthepairedcreation
Opticallyinducedinter-particleforcesS639
andannihilationeventsofoneofthetwovirtualphotonsinvolvedintheCasimir–Poldercalculation.Thecorrespondingtime-orderedrepresentationisshowninfigure1(b).
Itisclearthattheresultofanysuchcalculationofanopticallyconferredpairenergywillexhibitalineardependenceonthephotonnumberoftheoccupiedmode.Whencastintermsofexperimentalquantities,thiswillbemanifestedasanenergyshiftwithacorrespondingproportionalitytotheirradianceofthroughputradiation.Beyondthisfeature,detailedcalculationisnecessarytogaugethesignificanceoftheeffectincomparisontothedispersioninteraction—especiallysincesingle-photonoccupationofallradiationmodesisinprincipleaccommodatedforeachvirtualphoton,whereasjustonemodewithamuchlargeroccupationnumbermightbeinvolvedinrepresentingideallaserthroughput.Thefirstdetailedcalculationsofalaser-inducedpairenergy[7–12]gaveresultsthatwereencouraging,butonlyforlevelsofintensity(typicallymegawattspersquarecentimetre)thatwereatthetimedifficulttoachieve.Withsuchintensitiesbecomingroutinelyavailable,interesthasrecentlybeguntorefocusonthephenomenoninanumberofrecentpublications[13–19].Moredetailonthepresentexperimentalcontextandpotentialsignificanceisgivenintheconcludingsection.Itshouldhoweverbemadeclearfromtheoutsetthattheseforcesarepairwiseinteractionsofmatterwiththeradiation,quitedistinctfromthemorefamiliaropticaltweezer[20,21]oropticalmolassesforces[22,23]whichoperateonindividualparticles1.
Inthenextsection,weoutlineabasisforthederivationofageneralresultforopticallyinducedinter-particleforces,associatedwithaperturbativeenergyshift.Attentionisdrawntothewayinwhicharesultapplicabletomoleculesshouldbemodifiedwhenappliedtotheinteractionofopticallysuspendednanoparticles.Insection3,theapplicationstomolecularsystemsareexploredindetailandexemplifiedbycalculationsontwoextremecases.First,attentionisfocusedonthelooselyboundcomplexesknownasvanderWaalsdimers,forwhichitisdemonstratedthatlaserlightshouldproduceasmallbutsignificantextensioninthebondlength.Inthespecificcaseofahydrogencyanidedimer,theresultshouldbemeasurablebyrotationalspectroscopy.Thesecondapplicationistomolecularsolids,forwhichitisshownthateachpairwiseinteractionbetweenneighbouringmoleculesissubjecttoopticalforcesthataffectalocalmechanicaldeformation—alinearcompressionalongthepolarizationdirectionaccompaniedbyanexpansionintheperpendicularplane.Thus,aneffectofopticalelectrostrictionisidentifiedanditsmolecularoriginisdetermined.Insection4,arangeofsecondaryeffectsisdescribed,theexperimentalchallengeofdeterminingthesedistinctiveoptomechanicaleffectsisgivenarealisticappraisalandsomepossibledeviceapplicationsareidentified.2.Perturbativecalculations
WebeginbydefiningthecomponentsofasimplesystemcomprisingapairofparticlesAandB,eachwithdistinctelectronicintegrityandelectricalneutrality,togetherwiththeradiationfield.Asisappropriateforthesubsequentapplicationsdetailedspecifically,theterm‘molecules’willbeusedinthefollowingasagenericdescriptoroftheseparticles.RepresentingthesysteminquantumelectrodynamicaltermsintheCoulombgaugeensuresthatthecouplingfieldsaredulyretardedandsatisfycausality[24].Inmultipolarform,thesystemHamiltonianmayberepresented,thus
ξξ
Hmol+Hint+Hrad.(2.1)H=
ξ=A,B
1
ξ=A,B
Thelattercommonlyresultfromresponsetoanintensitygradientoranexchangeofmomentumwiththeradiation,
respectively.
S0
ξ
DLAndrewsetal
ξ
Here,Hmolisthefield-freemultipolarHamiltonianformoleculeξ,operatorHintrepresentstheinteractionofξwiththeradiationfieldandHradistheradiationHamiltonian.Thetripartitesimplicityofequation(2.1)specificallyresultsfromadoptionofthemultipolarformoflight–matterinteraction,basedonawell-knowncanonicaltransformationfromtheminimal-couplinginteraction[25–27].ThisprocedureresultsinaprecisecancellationfromthesystemHamiltonianofallCoulombicterms,savethoseintrinsictotheinternalstructureoftheHamiltonianoperatorsforthecomponentmolecules.Intheelectricdipoleapproximation,ξ
isgivenbyHint
ξ−1
Hint=−ε0µ(ξ)·d⊥(Rξ),(2.2)
ξ
withµ(ξ)andRξ,respectively,denotingtheelectric-dipolemomentoperatorandtheposition
vectorofmoleculeξ.Theoperatord⊥(Rξ),representingthetransverseelectricdisplacementfieldatthatlocation,isexpressibleinthefollowingmodeexpansioninvolvingsummationsoveropticalwavevectors,p,andpolarizations,ε:
h¯cpε01/2(ε)⊥
¯(ε)(p)a†(ε)(p)e−i(p·Rξ).e(p)a(ε)(p)ei(p·Rξ)−e(2.3)d(Rξ)=i
2Vp,εHere,e(ε)(p)isthepolarizationunitvector(¯e(ε)(p)beingitscomplexconjugate,theadmission
ofcomplexpolarizationsallowingforcircularorellipticalaswellasplanepolarization);Visanarbitraryquantizationvolumeanda(ε)(p),a†(ε)(p)are,respectively,thephotonannihilationandcreationoperatorsforaradiationmode(p,ε).
Asdiscussedintheintroduction,tosecureageneralresultfortheopticallyinducedenergyshift,E,andhencetheassociatedforcebetweenAandB,requirestheimplementationoffourth-orderperturbationtheory—sincetheinteractionentailsfourmolecule-radiationfieldcouplingevents:
i|Hint|tt|Hint|ss|Hint|rr|Hint|i
.(2.4)E=Re
(E−E)(E−E)(E−E)itisirt,s,rHere,allstatesarethoseofthesystem,i.e.thetwomoleculesplustheradiationfield;|iis
theunperturbedsystemstateinwhichbothmoleculesareintheirelectronicgroundstate,|r,|sand|tarevirtualstatesandEnistheenergyofstate|n.Thelattersignifiesoneofthebasisstatesfortheperturbativedevelopment,expressibleintheform
|n=|moln|radn≡|moln;radn,
(2.5)
with|molnand|radndefiningstatesofthemolecularpairandtheradiation,respectively.Inequation(2.4),eachoperationofHintonthestatetoitsrightaffectstheannihilationorcreationofaphoton,asfollowsfrom(2.2)and(2.3).Thelaser-inducedinteractioninvolvestheannihilationofathroughputphotonatonemoleculeandthestimulatedemissionofanequivalent‘real’photonintotheradiationmode;thisismediatedbyintermolecularenergytransferthroughavirtualphotoncreatedatonesiteandannihilatedattheother.Themoleculesandthethroughputradiationsuffernooverallchangeinstate;theterm‘real’appliedtophotonsoftheinputmodedenotesquantaofelectromagneticradiationwithapropagationtimethatislongcomparedtotheopticalcycleandcorrespondingly‘real’characteristics[28].Inperformingenergyshiftcalculationsbasedon(2.4),detailedrepresentationsofallcontributorytermsareprovidedbyasetof48time-ordereddiagrams,oneofwhichisexhibitedinfigure1(b).Whensuchalargenumberoftime-orderingsisinvolved,arecentlydevisedalternativebasedonstate−sequencediagrams[29]provesadvantageous.Allthetime-orderingsareinfactaccommodatedinjusttwostate-sequencediagrams(oneforthecase
Opticallyinducedinter-particleforcesS1
Figure2.State-sequencediagramforallcontributionstothelaser-inducedpotentialassociatedwithrealphotonabsorptionatAandstimulatedemissionatB,correspondingto24distincttime-orderings.Eachsystemstateisrepresentedbyaboxandtheprogressionofsystemstates,|i,|r,|s,|t,|iinequation(2.4),isreadfromlefttoright.WithineachboxthestatesofmoleculesAandBaredesignatedbyadjacentcircles,AontheleftandBontheright.Blackcirclesdenoteanelectronicgroundstate;white,avirtualintermediatestate.Photonsfromthelaserandvirtualradiationarerepresentedbyωandφ,respectively.Theboldpathwaycorrespondstotheillustrativetime-orderingdepictedinfigure1(b).
wheretherealphotonabsorptionoccursatAandthestimulatedemissionatB,theotherwheretheoppositeapplies),oneofwhichisshowninfigure2.
TheexplicitresultforEfollowsthesubstitutionofequations(2.2)and(2.3)into
|radn,respectively—(2.4),recognizingthatµ(ξ)andd⊥(Rξ)operateon|molnand√
(ε)
thelatterthroughthefollowingexpressions:a(p)|n(p,ε)=n|(n−1)(p,ε)and
√
a†(ε)(p)|n(p,ε)=n+1|(n+1)(p,ε).Detailsofthecompletecalculationaregiveninarecentpaper[16].Thefollowingresulttherebyemerges,conciselyexpressibleusingtheimpliedsummationconventionforrepeatedCartesiantensorindices:
nh¯ck±AB
¯(λ)Reei(λ)eα(k)V(k,R)α(k)exp(ik·R).(2.6)E(k,R)=ijklljk
ε0V
Here,kandh¯ckdenotetheinputwavevectorandphotonenergy,respectively,andRis
±
theinter-particledisplacementvector,R≡RB−RA.AlsoVjksignifiesthefullyretardedresonanceelectricdipole–electricdipoleinteractiontensoroftheform[30]
e∓ikR±ˆk−(kR)2δjk−Rˆk,ˆjRˆjR1±ikR)δ(2.7)Vjk(k,R)=−3R(jk
4πε0R3andαij(k)isthedynamicpolarizabilitytensorgivenas
issiissiµiµjµjµiξ
αij(k)=+,
˜si−h˜si+hE¯ckE¯ck
s
ξ
(2.8)
˜xy≡E˜x−E˜y,thetildedenotingtheinclusionofdampingfactorswhereµxy=x|µ|yandE
asappropriate.
S2DLAndrewsetal
Figure3.Pairoflinearmoleculesbondedend-to-end.Here,φsignifiestheanglebetweenthepolarizationvectoroftheincidentlaserradiationandtheintermolecularseparationvector.
Beforeproceedingfurther,wenotethattheaboveresultinprincipleholdsfortwoparticlesinavacuum,eachwithpropertiesexpressibleintermsofwavefunctionsthatextendoverthewholeparticle—asisessentiallythecaseforthemoleculesofagas.Inthecondensedphase—thecaseofmolecularsolidsor,forexample,particlesopticallytrappedinahostliquid,dissipativeandrefractivecorrectionsduetotheelectronicpropertiesofthelocalenvironmentshouldbeappliedtoboththeinter-particlecoupling(whichistherebycastintermsofvirtualpolaritonsratherthanphotons)andalsotheinteractionswiththeopticalbeam.Theprocedureforintroducingsuchcorrectionsisintricatebuttheoutcomeisknown[31,32]andthenecessaryreformulationoftheaboveresultproducesthefollowingequation:
2
nk+2(λ)(λ)A¯vkknε0h±B
¯eeχ(k)V(nk,R)χ(k)expik·R,E(k,R)=Re()ijkliljkk
3n3Vk
(2.9)whereχdenotesalinearsusceptibilitytensorscaledbythecorrespondingparticlevolume,vkisthegroupvelocityforthemediumatopticalfrequencyckandnkisthecorrespondingcomplexrefractiveindex.Althoughwedonotpursueithere,itcouldbeamatterofconsiderableinteresttofurtherdevelopthisequationfornanoparticlessuchasquantumdotswithdistinctivedispersioncharacteristics.3.Applications
Theconditionsthatexpeditesignificantinter-particleforces,givensuitablyintenselaserlight,arethosewherepairsofhighlypolarizableparticlesarefoundinreasonablycloseproximity.Inpreviouspublicationswehavefocusedoninteractionsbetweennanoparticles,inonecasespecificallyaddressingcarbonnanotubes[15].Thelatterareparticularlywellsuitedascandidatesforobservingandexploitinglaser-inducedpairforces,becauseoftheirexceptionalelectronicproperties.Theprospectsforidentifyingsimilareffectsinsmallermoleculesmightatfirstappearinauspicious,giventheroughscalingofpolarizabilitywithmolecularsizeandthequadraticdependenceofthelaser-inducedforcesonmolecularpolarizability.Therearetwopossibleapproachestoaddresstheproblem.Oneistochooseasystemthatisamenabletoextremelyhighresolutionmechanicalorspectroscopicanalysis,sothatverysmallgeometricadaptationstoanopticalpairforcecanbedetermined.Theotherapproachistoprobeasysteminwhichsmallmechanicaleffectsareamplifiedbyscale.Inthefollowing,weentertaindetailedexamplesofthesetwodistinctcases.3.1.VanderWaalsmolecules
VanderWaalsmoleculesareweaklybound,usuallydimericmolecularstructures.Havingsignificantlylargermomentsofinertiathantheirmonomerparents—thisdifferenceenhancedbytheunusuallylong‘bond’holdingthecomponentunitstogether—suchdimersarereadilyidentifiablebyhighresolutionmicrowavespectroscopy.Themodelsystemtobeexaminedinmoredetailbelowconsistsoftwolinearmoleculeslyingend-to-end(figure3),with
Opticallyinducedinter-particleforcesS3
theintermolecularseparationvectorRidentifiedwiththeZ-axisandtheplane-polarizedthroughputradiationdefinedbyφ,i.e.theanglebetweentheeandRvectors.Thepolarization
ˆ.Fromequation(2.6),andvectorcanthusbewrittenincylindricalformase=sinφˆi+cosφk
acknowledgingthatI(k)=nh¯c2kVistheirradianceofthethroughputradiation,theenergyshiftis
A±BI±BABA
E(R)=sin2φ·αXJVJ±α+sinφcosφαVα+αVαReXJJKKZZJJKKXKKX
ε0cJ,K
AB
+cos2φ·αZJVJ±KαKZcos(k·R)
(3.1)
wherethekandRdependencesarehenceforthsuppressed.Employingtheexplicitformofthe
VJ±Ktensorfrom(2.7),andwritingαXX=α⊥,αZZ=αforeachmolecule,equation(3.1)isexpressibleas
2coskRksinkRIABAB
α⊥−2cos2φ·αα·+E(R)=sinφ·α⊥
2R3R24πε0c
2kcoskRAB
cos(k·R).(3.2)α⊥−sin2φ·α⊥
RIntheshort-rangeregion(kR1),theleadingtermofequation(3.2),E0,isfoundbytakingtheleadingtermsintheTaylorseriesexpansionsofsinkR,coskRandcos(k·R)togive
2IAB2ABsin(3.3)φ·αα−2cosφ·ααE0(R)=⊥⊥.2
4πε0cR3
Onisotropicallyaveragingthesystemwithrespecttotheincominglight,theenergyshiftofequation(3.3)iswrittenas
ABIAB
E0(R)=α(3.4)α−αα.26πε0cR3⊥⊥
ABAB
Theresult(3.4)vanishesifα⊥α⊥=αα(i.e.,ifthemoleculesaresphericallysymmetric);otherwiseitisnon-zeroanditssignsignifiesaforcethatiseitherattractiveorrepulsive,asdeterminedbytherelativemagnitudesofthepolarizabilitycomponents.
ThevanderWaalsdimer(HCN)2isonewidelyknownexampleofsuchamolecularsystem.TheintermolecularbondiswellmodelledbytheStockmayerpotential[33,34]:
U(R,µA,µB)=4ε[(σ/R)12−(σ/R)6]+µA·µB/4πε0R3−3µA·RµB·R/4πε0R5,
(3.5)
whereRistheintermolecularseparation,σistheusualLennard–Jonesparameter,εisthewelldepthandtheµtermsaredipolemoments.Theeffectofintensethroughputlaserradiationistointroducealaser-inducedenergyshiftwhichcanbeincludedinaneffectivepotential,writing
(3.6)U(R)+E0(R)=U(R)+K/R3,
AB
AB2
where,fromequation(3.4),K=Iα⊥α⊥−αα/6πε0c.Themodificationtothepotentialenergysurfacechangestheequilibriumpositionofthebond,relatingtoacontractionorexpansion—dependingontheattractiveorrepulsivenature,respectively,ofthelaser-inducedenergyshift.Differentiatingequation(3.6)withrespecttoRgivesthefollowingatthenew
=R0+δR0:equilibriumpositionR0
U(R0+δR0)−3K/(R0+δR0)4=0.
(3.7)
S4DLAndrewsetal
˚belowtheappropriateFigure4.Diagramofthe(HCN)2dimer.BondlengthsaregiveninA
˚bonds.Thedimer’scentreofmassisalsoshown,0.605AfromthecentralHatom.
TakingtheleadingterminTaylorseriesexpansionsofbothtermsintheaboveequationleads
toanexpressionforδR0asfollows:
3K
δR0=4.(3.8)
R0U(R0)Differentiatingequation(3.5)twicewithrespecttoRgivesthefollowingexpressionforthechangeinequilibriumbondlength:
22
πI(k)α⊥R/9c−α
δR0=,(3.9)
ε[26σ12/R9−7σ6/R3]−|µ|2/4πε0recognizingthatαA=αB=αandµA=µB=µ.Intheabove,αreferstovolumepolarizabilities(αscaledby1/4πε0).
˚fromFigure4showsthestructureofthe(HCN)2dimer.Itscentreofmasslies0.605A
˘aboutthethecentralHatom,alongtheintermolecularbond.FromthemomentofinertiaI
centreofmass,therotationalconstantBofthedimercanbecalculatedfrom
˘(3.10)B=h/8π2Ic,withareportedvalue[35]of0.0584cm−1.Thechangeinequilibriumbondlengthinducedby
thelaserfieldwillmodifythemomentofinertiaandhencetherotationalconstantofthedimer.Substitutingdatafrompreviousstudies[34–36]intoequation(3.9),2itisreadilydeterminedthatarelativelymodestirradianceof1012Wcm−2willcausethedimerbondtoextendby1.72pm.Itisimportanttonotethat,despitethisbondlengthbeingmeasuredbetweenthecentresofeachmolecule,thelinearexpansionwillbealmostentirelyoperativethroughextensionoftheN–Hhydrogenbond.(Theprincipleoflaser-inducedbondextensioncouldbeappliedtoindividualbondsineitherHCNmolecule,butthepolarizabilityofeachHCNmoleculeismuchlargerthanthatofanyindividualatomiccomponent;alsotheN–Hintermolecularbondhasamuchlowerforceconstantthantheintramolecularbonds.)Thechangeinequilibriumbondlengthcanbeappliedtoequation(3.10),givinganewrotationalconstantof0.0579cm−1—adifferenceofabout1%.Thisisexperimentallyverysignificant,wellabovetheboundsoferrorinmicrowavespectroscopicmeasurements.Takingaccountofthedistributionofintensityacrossatypicallaserbeam,itisclearthattheeffectwouldbemanifestedinabroadeningaswellasashiftinspectrallines.3.2.Molecularsolids
Theeffectsofopticallymodifyingapairinteractionpotentialwillnowbeexploredinthecontextofmolecular(usuallyorganic)solids,wheremicroscopicmechanicaleffectscanbeamplifiedbyscale.Beforeproceedingwiththedetail,itisinterestingtofirstidentifyandinterpretaclassicalrepresentationoftheopticallyinducedpairforce.Tothisend,notethatequation(2.6)canverysimplybere-expressedas
±1¯(3.11)E(R)=2ReVjk(k,R)Pj(k)Pk(k)exp(ik·R),
2
Weusestaticpolarizabilityfigures,asthecorrespondingdynamicvaluesarenotapparentlyavailable.
Opticallyinducedinter-particleforcesS5
eφR(a)
θe(b)
Figure5.Parallelcylindricalmoleculesbondedside-to-side:(a)intheXZ-planeand(b)intheXY-plane.Thepolarizationvectoroftheincidentlaserradiationisdefinedbyitsangulardispositionagainsttheintermolecularseparationvectorandthemolecularaxis(φandθ,respectively).
nowcastinducedelectricalpolarizationsP(andnotingtheclassicalcorrespondenceintermsofnh¯ckε0V→E22,whereEistheelectricfieldoftheradiation).Forneighbouringmolecules,theshort-rangelimitoftheexponentialisappropriateandwehave
±1¯¯E(R)=σjk(k)Pj(k)Pk(k)≡2ReVjk(k,R)Pj(k)Pk(k),(3.12)whichcaststhecouplingtensorσjkasaneffectivelocalstresstensor.Takingthesecond
derivativewithrespecttovectorcomponentsofR(andforconcisenesssuppressingthek-˜signifiesthemicroscopicresponsedependence),theensuingtensorx
∂2E∂2
¯k.˜il≡=XijklPjPk≡σjkPjP(3.13)x
∂Ri∂Rl∂Ri∂Rl
Inasolidwithperfectelasticity,thesecond-orderstraintensorwouldbedirectlyproportionalto˜;theaboveequationthusdesignatesthefourthranktensorXijklasaneffectiveelectrostrictivex
coefficient.Althoughtheterm‘electrostrictive’3isusuallyemployedinconnectionwithstaticelectricfields,weadopttheterm‘opticallyelectrostrictive’tosignifytheeffecttobedetailedbelow—thestemofthelatteradjectiveservingasareminderthattheassociatedeffectisaresultofelectricalinteractionsbetweenthematterandtheradiation.Incontrastto‘piezoelectric’,theterm‘electrostrictive’alsosignifiesconsistencywithaquadraticdependenceontheinducedpolarization—andacorrespondingindependenceofthelatter’ssign[38,39].
Toproceed,itisappropriatetoenvisageanarrangementconsistingofparallel,linearmoleculesasshowninfigure5.Suchastructurecanbefound,forexample,insolidscomprisedofpoledpolymers(averagingouttheeffectsofmisregistrationofchainends)orsmectic/nematicliquidcrystals4.Focusingononeneighbouringpairofmoleculesindetail,wespecificallyconsiderapairofparallel,cylindricallysymmetricmoleculeswithamutualseparationvectorRorthogonaltotheir‘long’molecularaxes.IdentifyingRwiththeZ-axisandthemolecularaxiswiththeX-direction,andassumingthesystemisirradiatedwithplane-polarizedlight,thepolarizationvectorofincidentradiationcanbedefinedas
ˆincylindricalform,whereφandθaretheanglese=sinφcosθˆi+sinφsinθˆj+cosφk
madebyewithRandthemolecularaxis,respectively.Fromequation(2.6),thelaser-inducedenergyshiftexperiencedbythispairis
IABAB
VXXαXX+sin2φsin2θαYResin2φcos2θαXXE(R)=YVYYαYY
ε0c
AB
cos(k·R),(3.14)+cos2φαZZVZZαZZ
Thereisanotherquitedistinctbutnowlesscommonusageoftheterm‘electrostrictive’inconnectionwithDrude
andNernst’stheoryofionsolvation—see,forexample[37].
4Inthecaseofliquidcrystalsanappliedelectricfieldisgenerallyrequiredtomaintainthestructureindomainsofexperimentallyamenablevolume.
3
S6DLAndrewsetal
sincealltheothertermsareequaltozero.EmployingtheexplicitformoftheVJ±Ktensorand,foreachmoleculewritingαYY=αZZ=α⊥,αXX=α,equation(3.1)isdifferentiatedtogivethefollowingexpressionfortheforceinducedbetweentheparticlesFind=−∂Eind∂R:F0ind(R)=
AB23I2AB22
αsinαφ2+sinθ−2+ααsinφcosθ,24πε0cR4⊥⊥
(3.15)
aftertakingtheleadingtermsintheTaylorseriesexpansionsofcoskR,sinkRandcos(k·R)
(effectingacorrectiontotheresultgivenin[16]).Thisiseffectivelytheonlyoperativepairforce,sinceotherinter-particleforcesinthesolidarebalancedatequilibrium.Itisinstructivetoconsiderthreespecialcases,inwhichthepolarizationvectoroftheincidentlightisparalleltoeitherthemolecularaxisortheseparationvector,oritisorthogonaltoboth.Inthefirstcase,whereφ=90◦andθ=0◦,theforceisequalto
F0ind(R)
=
AB
α3Iα24πε0cR4
,(3.16)
signifyingarepulsiontendingtoincreasetheintermolecularseparation.Inthesecondcase
φ=0◦,giving
F0ind(R)
AB
α⊥3Iα⊥=−,22πε0cR4
(3.17)
correspondingtoadecreaseintheintermolecularseparation.Finally,whenφ=θ=90◦,
equation(3.15)gives
F0ind(R)
AB
α⊥3Iα⊥=,24πε0cR4
(3.18)
againsignifyingarepulsion.(Itmaybenotedthatforsphericallysymmetricspecies,the
firstandthirdcasesareidentical.Inanyothersystem,therelativestrengthsoftherepulsive
ξξξ
forcesdependonthemagnitudesofαandα⊥.)Forelectronicallyprolatemolecules,αis
ξ
greaterthanα⊥,soequation(3.16)willsignifyalargerrepulsionthantheattractiongivenbyequation(3.17);thereverseholdstrueforoblatemolecules.
Theabovemodelaccountsforonlytwodimensionsofmolecularpackingintheseanisotropicsolids.Inordertoaccountforthethird,wemustreturntotheend-to-endmodelexploredinanotherconnectionintheprevioussubsection.Fromequation(3.3),whenthepolarizationvectoroftheincidentradiationisparalleltotheintermolecularseparationvector,theensuingforceisequalto
F0ind(R)
=−
AB
3Iαα22πε0cR4
,(3.19)
onceagainsignifyinganattraction.Ifthepolarizationvectorisorthogonaltotheseparation
vector,theenergyshiftemergesas
F0ind(R)
AB
α⊥3Iα⊥=,2
4πε0cR4
(3.20)
signifyingrepulsion.Thus,irradiatingsuchasolidwithplane-polarizedlightwillaffecta
contractionparalleltothepolarizationofthelaserbeamandanexpansionintheothertwodimensions,bothlinearlydependentontheirradianceofthelaser.
Again,therespectiveattractiveandrepulsiveforcesarereadilyexplicableinclassicalelectrodynamicterms.Theoscillatingelectricfieldoftheradiationinducesexactlyin-phase
Opticallyinducedinter-particleforcesS7
e(i)Re(ii)e(iii)(a)e(v)e(iv)R(b)Figure6.Diagramsdepictingkeyorientationsoftheincidentlaserradiationwithrespecttothemolecularsystem.In(a),themoleculesarebondedside-to-sideandthepolarizationoftheincidentradiationis(i)paralleltothemolecularaxis;(ii)paralleltoRand(iii)orthogonaltoboth.In(b),themoleculesareend-to-endandthepolarizationis(iv)paralleltoand(v)orthogonaltotheintermolecularseparationvector.
(and,ifthemoleculesaresimilarlyaligned,parallel)oscillatingdipolesinbothmolecules.Asshowninfigure6,wheneandRareorthogonal,thesedipoleslineup‘head-to-head’—accountingfortherepulsiveforceexhibited—whereaswhentheyareparallel,thedipoleslineup‘head-to-tail’—hencetheattraction.Itisalsoworthremarkingthatacompressionparalleltoetogetherwithanexpansionindirectionsperpendiculartoeproducesasoliddeformationcharacterizedbyanincreaseinvolume5thatscaleslinearlywiththeirradianceI.Thissignifiesachangeinthelocaldensity—andhencealsoalocalrefractiveindex—thatscaleslinearlywithI.So,thiseffectleadstoanoptomechanicallyinducedintensity-dependentrefractiveindex[40].Thatistosay,itcontributestoaneffectwhich,insolids,isdominatedbymuchmorewidelyknownelectronicmechanismssuchastheopticalKerreffect—and,inabsorbingregions,photothermaleffectsduetospatiallyinhomogeneousheating.Intriguingly,electrostrictionwasindeedconsideredinconnectionwithanintensity-dependentrefractiveindexintheearlydaysoflaserphysics[41],butitsubsequentlyemergedthatothermechanismsplayamoredirectandsignificantrole.3.3.ComparisonwithCasimir–Polderforces
ItisinstructivetogaugetherelativesignificanceoftheforcesdescribedabovewiththoseassociatedwiththeCasimir–Polderinteraction.Inarigidsystem,theforceinducedbythispotentialcanbeexpressed,fornear-zoneinteractions,as[6]
|µr0(A)|2|µs0(B)|227
.(3.21)FCP(R)=−27Er0+Es012π2ε0Rr,s
Inthespecialcaseofsphericalmolecules,thenetexpansiontoleadingordersfrom(3.19)and(3.20)cancels,as
thenumericaldifferencebyafactorof2iscompensatedbythefactthattherearethetwodirectionsperpendiculartothepolarizationvector.
5
S8DLAndrewsetal
Forsimplicity,thiscanbecomparedtothelaser-inducedforceinonedirectionforidentical,
ξξ
sphericalparticles(i.e.,α⊥=α=α)onafixed,cubiclattice;themagnitudeanddirectionalityoftheforcebothdependontheorientationofthesystemwithrespecttothepolarizationvectoroftheincidentradiation.ForthosepairswithRparalleltoe,theforcecanbewritten,fromequation(3.19),asfollows:
F0ind
3Iα2
.(R)=−22πε0cR4
(3.22)
Fororderofmagnitudeestimations,thetransitiondipolemomentscanbeapproximatedas
productsofanelectronchargeandtheBohrradius,i.e.asea0;likewisetheenergydifferencesapproximatetoe2/4πε0a0.Itthusfollowsthatthepolarizability,fromequation(1.8),isequal
3
.Substitutingtheseexpressionsintoequations(3.21)and(3.22),theratioofthetwoto4πε0a0
forcescanbecalculatedas
F016π2Iε0a0R3ind(R)=,FCP(R)3ce2
(3.23)
which,atanappliedirradianceof1012Wcm−2,isequalto2.8×10−3.SincetheCasimir–
Polderinteractionisalwayspresent,thelaser-inducedinteractioncanbeviewedinenergytermsasacorrectioneitherenhancingordiminishingthepaircoupling,asdeterminedbythelaserpolarization.Withtheincreasinguseofhigh-intensitylightinlaserexperimentstoday,itappearsthattheopticaleffectwillexertasignificantinfluenceonthemolecularmechanics.4.Conclusion
Intheintroduction,themainpurposewastorehearsealineofreasoning,basedonquantumelectrodynamicalconcepts,thatbothsuggeststhepossibilityandoffersthemeansofcalculatinglaser-inducedpairforces.Thedetailedtheorythatensueshasbeendevelopedinsection2,itsuniversalityofapplicabilitydemonstratedanditskeyfeaturesdelineated.Recognizingtheexperimentalchallengeslikelytobeinvolvedincharacterizingsuchphenomena,physicallyidentifiableresultshavebeendeterminedfortwophysicallyverydifferentsystems,thecorrespondingestimatessuggestingentirelyrealisticprospectsforexperimentaldetermination.Inparticular,anopticalelectrostrictionphenomenonhasbeenidentified,itselectrodynamicinterpretationexploredanditsrelationtoCasimir–Polderforcesdiscussed.Throughthefullquantumelectrodynamicalanalysispresentedabove,keyparametersthatdeterminethesizeandcharacterofopticalelectrostrictionhavebeenidentifiedanditssignificanceassessed.Inthefollowing,itisouraimtoputtheseresultsfullyintocontext.
First,itneedstobereaffirmedthatopticallyinducedpairwiseforcesbetweenparticlesareclearlydistinguishablefromthevariousformsofopticalforcethatintenselaserlightcanexertonindividualparticles.Thelattercategoryofforcesismuchbetterknown—andwidelyapplied,inmethodsasdisparateasopticaltweezersandopticalmolasses.Someofthemostobviousdifferencesthatariseinthecaseofopticallyinducedinter-particleforcesarethatthelatterdependneitheronintensitygradientsnoronabsorptionprocesses.Thus,insystemswhere,forexample,opticalmolassesareemployedfortrappingatoms,opticalpairforceswilloperateinadditiontotheforcesonindividualatoms,andmaytherebyinfluencetheensemblebehaviour.Morespecifically,whenanyparticlesareheldatequilibriuminanopticaltraportweezersset-up,thesmallopticallyinducedforcesthatalsooperatemaybesufficienttoproduceobservabledeparturesfromthebehaviourexpectedofindependentparticles.Insomeearlierwork,ithasalreadybeenshownthataweakbindingeffectcaninsomecasesleadtoopticalclusteringandinotherstopatternformation[42].
Opticallyinducedinter-particleforcesS9
Insuitablecases,ithasbeenshownthatopticallyinducedpairforcesshouldproveaccessibletoexperimentaldeterminationingasesandinsolids,usingwidelydifferentexperimentalmethods.Wenotethatthelevelsofintensitychosenforourmodelcalculationsarereadilyattainable,forexample,fromthefocusedirradianceofacurrentgenerationfemtosecondmode-lockedtitanium:sapphirelaser.ForvanderWaalsmolecules,measurementbyamicrowavespectroscopictechnique,whileundoubtedlyhighlydemanding,hasthevirtuethatnootherprocessesobviouslycompete.Amoredirectalternativemightbetoattemptdetectionusingatomicforcemicroscopy,withoneofthemoleculestetheredonasubstrate.Thesameexperimentalobjectivitywillbemuchhardertoachieveinthecaseofopticalelectrostriction.Thoughclearlydependentonthechoiceoflaserwavelength,thetypicallybroadopticalabsorptionbandsassociatedwiththesolidstatewillmakeitdifficulttoensureadegreeoftransparencysufficienttoobviatepotentiallymuchlargerthermaleffects—suchasthewell-knownchangeinrefractiveindexinvolvedinthermallensing.Itisironicthatthisneedtoensureoperationwelloutsideregionsofabsorptionmilitatesagainstexploitingthedispersionbehaviourofthemolecularpolarizability,whichmightotherwiseofferanobviousresonanceroutetoenhancement.
Inseekingthebestexperimentalmethodology,thehugerecentadvancesinthetechnologyofultra-preciseforcemeasurementmightoffersomeencouragement.Nonetheless,sincedirectlyoperativemechanicaleffectsarenecessarilylimitedbythespatialbeamwidthofthelaserlight,itmaybemorepracticaltolookforsecondaryeffects,suchasthechangeinrefractiveindexnotedinsection3,whicharebothconfinedtoandmonitoredbytheradiationitself.ArelatedpossibilitymightbetoseekforadetectionofchangesintheRamansignatureoftheemergentlight,adaptingsomeofthehighlysensitivespectroscopicmethodsthatareemployedtodetectmechanicalstressinsemiconductors.Oneotherverydifferentpossibilitywouldbetomeasurenanoscaleforcesbetweenwaveguidesasafunctionofthroughputintensity,ashasbeenproposedinarecentcollaborationbetweengroupsatMITandHarvard[43].Thetheoryisofcoursecastverydifferently,butatafundamentallevelthephysicsisundoubtedlyrelated.
Althoughwehavefocusedontheintrinsicinterestofthesubject,wewouldendbypointingoutthepossibilitiesfordeviceapplications.Inthecontextofdramaticallyacceleratingdevelopmentsinthefieldofnanoelectromechanicalsystems,anymechanismthatcanreproduciblydeliverareversibleandultrafastmechanicalresponse,actuatedbylight,appearstobeofconsiderablemerit.Again,inthefieldofmicrofluidicsthereisscopetoconsiderhowlaser-inducedmolecularforcesmightbeusedtocontrolthemixingorpumpingofextremelysmallvolumesinlab-on-a-chipandassociateddevices;intheseandinmanyotherareasthereisplentyofscopeforspeculation.Itisourhopethat,withthefundamentalprinciplesfullyestablished,thedevelopmentofsomeoftheseapplicationscannowbegin.Acknowledgments
ThispaperisofferedasatributetoEdwinPower,whosememorablylucidteachingwasaprivilegetoexperience(DLA),andwhoseworkcontinuestoinspiremembersoftheQEDgroupatUniversityofEastAnglia.ThegroupgratefullyacknowledgesfinancialsupportfromtheEngineeringandPhysicalSciencesResearchCouncil.References
[1]PowerEA2001Eur.J.Phys.22453
[2]PowerEAandThirunamachandranT2002JMol.Struct.—Theochem.59119
S650DLAndrewsetal
[3]CasimirHBG1948Proc.Kom.Ned.Akad.Wetensch.B51793[4]CasimirHBGandPolderD1948Phys.Rev.73360[5]LamoreauxSK1997Phys.Rev.Lett.785
[6]PowerEA19IntroductoryQuantumElectrodynamics(London:LongmansGreen)[7]ThirunamachandranT1980Mol.Phys.40393
[8]AndrewsDLandHarlowMJ1984Phys.Rev.A292796
[9]BurnsMM,FournierJMandGolovchenkoJA19Phys.Rev.Lett.631233[10]MilonniPWandShihML1992Phys.Rev.A4241
[11]DepasseFandVigoureuxJM1994J.Phys.D:Appl.Phys.27914[12]MilonniPWandSmithA1996Phys.Rev.A533484
[13]ChaumetPCandNieto-VesperinasM2001Phys.Rev.B030322[14] Mohanty S K, Andrews J T and Gupta P K 2004 Opt. Express 12 2746[15]AndrewsDLandBradshawDS2005Opt.Lett.30783
[16]BradshawDSandAndrewsDL2005Phys.Rev.A72033816[17]BradshawDSandAndrewsDL2005Opt.Lett.303039[18] Salam A 2006 J. Chem. Phys. 124 014302[19]SalamA2006Phys.Rev.A73013406
[20]AshkinA1997Proc.NatlAcad.Sci.USA944853
[21]MolloyJEandPadgettMJ2002Contemp.Phys.43241[22]CornellEAandWiemanCE2002Rev.Mod.Phys.74875
[23]CarterAR,BabikerM,Al-AmriMandAndrewsDL2006Phys.Rev.A73021401[24]PowerEAandThirunamachandranT1997Phys.Rev.A563395[25]PowerEAandZienauS1959Phil.Trans.R.Soc.A251427[26]WoolleyRG1971Proc.R.Soc.A321557
[27]BabikerM,PowerEAandThirunamachandranT1974Proc.R.Soc.A338235[28]AndrewsDLandBradshawDS2004Eur.J.Phys.25845[29]JenkinsRD,AndrewsDLandD´avilaRomeroLC2002J.Phys.B:At.Mol.Opt.Phys.345[30]DanielsGJ,JenkinsRD,BradshawDSandAndrewsDL2003J.Chem.Phys.11922[31]MilonniPW1995J.Mod.Opt.421991[32]JuzeliunasG1996Phys.Rev.A5333
[33]GaoGT,WollerJB,ZengXCandWangWC1997J.Phys.:Condes.Matter93349[34]ChurakovSVandGottschalkM2002Geochim.Cosmochim.Acta672397[35]SomasundramK,AmosRDandHandyNC1986Theor.Chim.Acta69491[36]DionCM,KellerA,AtabekOandBandraukAD1999Phys.Rev.A591382
[37]LaidlerKJ,MeiserJHandSanctuaryBC2003PhysicalChemistry(Boston:HoughtonMifflinCompany)p
296
[38]ShkelYMandKlingenbergDJ1996J.Appl.Phys.804566[39]ShkelYMandKlingenbergDJ1998J.Appl.Phys.837834
[40]SalehBEAandTeichMC1991FundamentalsofPhotonics(NewYork:Wiley)p752[41]ChiaoRY,GarmireEandTownesCH19Phys.Rev.Lett.13479
[42]BradshawDSandAndrewsDL2006NanomanipulationwithLightIIedAndrewsDL(Proc.SPIE6131
61310G)
[43]PovinelliML,LoncarM,IbanescuM,SmytheEJ,JohnsonSG,CapassoFandJoannopoulosJD2005Opt.
Lett.303042
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- sarr.cn 版权所有 赣ICP备2024042794号-1
违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务