Goal-basedExplanationEvaluation
DavidB.Leake
ComputerScienceDepartment
IndianaUniversity
101LindleyHallBloomington,IN47405leake@cs.indiana.edu
Iwouldliketothankmydissertationadvisor,RogerSchank,forhisveryvaluableguidanceonthisresearch,andtothanktheCognitiveSciencereviewersfortheirhelpfulcommentsonadraftofthispaper.TheresearchdescribedherewasconductedprimarilyatYaleUniversity,supportedinpartbytheDefenseAdvancedResearchProjectsAgency,monitoredbytheOfficeofNavalResearchundercontractN0014-85-K-0108andbytheAirForceOfficeofScientificResearchundercontractF49620-88-C-0058.
CorrespondanceandrequestsforreprintsshouldbesenttoDavidB.Leake,ComputerScienceDepartment,IndianaUniversity,Bloomington,IN47405-4101.
Abstract
Manytheoriesofexplanationevaluationarebasedoncontext-independentcriteria.Suchtheo-rieseitherrestricttheirconsiderationtoexplanationtowardsafixedgoal,orassumethatallvalidexplanationsareequivalent,sothatevaluationcriteriacanbeneutraltothegoalsunderlyingtheattempttoexplain.However,explanationcanservearangeofpurposesthatplacewidelydivergentrequirementsontheinformationanexplanationmustprovide.Wearguethatunderstandingwhatdeterminesexplanations’goodnessrequiresadynamictheoryofevaluation,basedonanalysisoftheinformationneededtosatisfythemanygoalsthatcanpromptexplanation;thisviewconformstothecommon-senseideathatpeopleacceptandapplyexplanationspreciselyifthoseexplanationsgivetheinformationtheyneed.Weexaminearangeofgoalsthatcanunderlyexplanation,andpresentatheoryforevaluatingwhetheranexplanationprovidestheinformationanexplainerneedsforthesegoals.WeillustrateourtheorybysketchingitsimplementationinthecomputerprogramACCEPTER,whichdoesgoal-basedevaluationofthegoodnessofexplanationsforsurprisingeventsinnewsstories.
i
1Introduction
Theuseofexplanationiscentraltotheoriesinmanyareasofartificialintelligence,suchastextunderstanding(e.g.(Granger,1980;Schank,1982;Wilensky,1983;Schank,1986;Hobbsetal.,1990)),planrepairandindexing(e.g.,(Hammond,1989)),andguidinggeneralization(e.g.,(Mitchelletal.,1986;DeJong&Mooney,1986)).Inaddition,recentexperimentshavesupportedsomeoftheseexplanation-basedprocessesaspsychologicalmodels(Ahnetal.,1987).However,thebenefitsofexplanation-basedprocessingdependontheexplanationstakenasstartingpoint.Inreal-worldsituations,manycandidateexplanationsmaybeavailableforasingleevent,promptingthequestionofhowtoselecttheexplanationonwhichtobasefurtherprocessing.
Sinceexplanationscanbeusedinmanyways,itseemsreasonablethatratherthanseekingauniversal“best”explanation,anexplainershouldtailorexplanationtowardsservingthegoalforwhichitisintended.Nevertheless,theinfluenceofcontextonexplanationhasreceivedlittlestudyinpsychologyandartificialintelligence.Inpsychology,thecentralcurrentforresearchonpeople’schoiceofexplanationsisattributiontheory(Heider,1958),whichgenerallyaccountsforchoiceofexplanationswithoutreferencetowhatmotivatedtheexplanationeffort.Likewise,inartificialintelligence,criteriaforexplanations’goodnesstendtotakeacontext-independentview,basingtheirjudgementsoncriteriathatmakenoreferencetothegoalsoverarchingtheexplanationeffort(e.g.,(Granger,1980;Wilensky,1983;Pazzani,1988;Rajamoney&DeJong,1988;Thagard,1989;Ng&Mooney,1990;Hobbsetal.,1990)).Thesetheoriesfocusonchoosingtheexplanationsmostlikelytobevalid.However,eveniftheysucceedinidentifyingexplanationsthatarevalid,theymaynotgivesufficientinformationtoselecttheexplanationthatbestsatisfiestheexplainer’sgoals.Forexample,supposethattheeventtoaccountforisacompanybankruptcy.Supposefurtherthatthecompanywasbankruptastheresultoftwofactors,eitherofwhichwouldhavebeensufficienttocausethebankruptcy:thecompany’sbadmanagement,andexcessivelocaltaxes.Consequently,forthisexamplethereareatleasttwovalidexplanations:“thebankruptcywascausedbybadmanagement”and“thebankruptcywascausedbyhightaxes.”
Bankruptcieshaveadverseeffectsonthecommunitiesinwhichtheyoccur,soalocalpoliticianmighttrytoexplainthebankruptcy,withtheunderlyinggoalofpreventingitsrecurrence.Forthisgoal,therelativevalueoftheexplanationswouldbequitedifferent.“Thebankruptcywascausedbybadmanagement”isunhelpfultothepolitician,sinceitsuggestsnocourseofaction—
1
governmenthasnocontrolovermanagementinlocalindustries.However,“thebankruptcywascausedbyhightaxes”couldbethesourceofthegeneralizationthatextremetaxratesarelikelytoforcecompaniesintobankruptcy,whichcouldbeusefulasmotivationforthepoliticiantolowertaxes.Forashareholderinacompanyinalow-taxstate,theusefulnessofthetwoexplanationsisreversed:theshareholderbenefitsmorefromconsideringthedangersofbadmanagers,sincebadmanagementmightcausecompanystocktolosevalue.
Wemightthinkthateitherexplainercouldsimplyrequirethatanexplanationidentifyallcausallyrelevantfactors,inthatwayassuringthatallimportantconditionsaretakenintoaccount.However,real-worldeventsaresimplytoocomplicatedforcompleteexplanation.Forexample,anycompanybankruptcyactuallydependsoncountlessfactors,suchascompetingproducts,con-sumerdemand,thecompany’slaborsituation,itspasthistory(affectingitscashreserves),theowners’managementstyle,andthecurrentbankruptcylaws.Inourview,goodexplanationsmusthighlightafewimportantfactorsfromthemanythatarecausallyinvolved:thosethatgivetheexplainertheinformationitneeds.Sincenoexplanationcanbeexhaustive,goal-basedexplana-tionevaluationisneededforexplainerstorecognizewhethercandidateexplanationsaddresstheappropriatefactors.Insufficientexplanationscanberejected,orelaborateduntiltheyprovidetheneededinformation.
Inwhatfollows,wedevelopatheoryofgoal-basedexplanationevaluation.Weelaborateontheroleofoverachinggoalsinexplanation,demonstratinghowdifferentgoalsleadtodifferentrequirementsforexplanations’goodness,andhowthesecanbecharacterizedalongasmallsetofdimensions.Wethendescribetheimplementationofgoal-basedevaluationinacomputermodel,ACCEPTER,whichillustratesourtheory(Leake,1988a,1988b,1989b,inpress).Wearguethatgoal-basedevaluationimprovesanexplanation-basedsystem’scapabilitytofocusexplanation,toguideexplanationconstruction,andtofunctioneffectivelydespitesomeimperfectionsinitsdomaintheory.
2Overview
Webeginbysamplingpriorexplanationevaluationapproachesfrompsychology,philosophy,andartificialintelligence.Inbothpsychologyandinartificialintelligencethesetheoriestendeither
2
tolookattheevaluationprocessascontext-independent,ortoexamineitwithinasinglefixedcontext.Somephilosophicalaccountshavetakenaviewclosetoours,arguingthatexplanationdependsoncontext,andwegiveasamplingofsomeofthoseperspectives.
Wetheninvestigatehowaspecificaspectofcontext,theoverarchinggoaloftheexplainertouseanexplanation,determinestheinformationthattheexplainerrequireswhenconfrontedwithananomaloussituation.Weshowthatgoal-basedevaluationpermitsamoreperspicaciouschoicebetweencandidateexplanationsthanpriorapproaches,andalsoextendstherangeofexplanationsanexplainercanuse,byenablingprincipleduseofpartialexplanations.
Weconcentrateonevaluationofexplanationsofanomalousevents;thoseeventsoftenpromptnewgoalsbecausetheyrevealunexpectedaspectsofasituation.Thenewgoalspromptplans,whosesuccessdependsonappropriateinformation,inturnpromptingexplanationpurposestoextractparticularinformationfromanexplanation.Inordertocharacterizetheinformationthatexplanationpurposesrequire,wedevelopasmallsetofevaluationdimensionsfortestingtheuse-fulnessofhypothesizedcausesofanevent,andthatareusedtobuildchecksfortheexplanationpurposes.Thusourmodelaccountsforexplanationevaluationasfollows:
Anomaly
Goals
Plans
Explanationpurposes
Dimensionchecks
Evaluationdecision
Inthispaper,weconcentrateourdiscussiononexplanationpurposesandevaluationdimensions.
Weshowthatchecksalongdifferentcombinationsofthoseevaluationdimensionsaresufficienttoevaluateexplanationsforawiderangeofexplanationpurposes.WesketchACCEPTER’spre-liminaryimplementationofchecksforcertainevaluationdimensions,andshowhowitsevaluationdynamicallyreflectschangesincontextandinoverarchinggoals.Finallywearguethattheef-fectivenessofanyexplanation-basedprocessingdependsontheabilitytoassurethatexplanationssatisfytheneedsforinformationthatarisefromsystemgoals.
3
3Previousperspectives
3.1Psychologicalapproaches
MuchpsychologicalresearchonchoiceofexplanationsoriginatedinHeider’sseminalworkonattributiontheory(Heider,1958).Attributiontheoryinvestigateshowpeopledecidewhethertoexplainanactionintermsoffeaturesofitsactor,orfeaturesoftheenvironment.(Mostworkinattributiontheoryassumesthateitherpersonalorsituationalfactorswillapply,butnotboth.)OneimportantresultisKelley’scovariationprinciple,whichgivesahypothesisforhowpeoplemakethedecisionbetweenattributinganoutcometopersonalorsituationalfactors(Kelley,1967).Thecovariationprinciplesuggeststhatpeoplelookatcovariationacrossdifferenttime,people,andotherentitiesinordertodecidewhichtypeoffactorapplies.Forexample,ifJohndislikesamovie,butmostotherviewersareenthusiastic,Kelley’scovariationprinciplesuggeststhatJohn’sdislikeshouldbeexplainedbyaspectsofJohn,ratherthanaspectsofthemovie.
Althoughattributiontheorygivescriteriafordecidingwhichclassoffactorstoimplicate,itdoesnotsuggesthowtodecidewhichparticularpersonalorenvironmentalfactorsareimportant.Intheexampleofthemovie,itsaysthatagoodexplanationmustinvolvesomeaspectofJohn,butdecidingwhichisbeyonditsscope.ThisproblemwaspointedoutbyLalljeeandAbelson,whoobservethatpeoplewouldusuallytrytofindamorespecificreasonforthedislike(Lalljee&Abelson,1983).Forexample,someonewhohadinvitedJohntothemovie,expectinghimtolikeit,wouldprobablytrytodetermineJohn’sparticularobjections.Themorespecificinformationismoreuseful:itallowspredictingJohn’sreactionnexttime,toavoidinvitinghimtoanotherinappropriatemovie.
Attributiontheoryalsofailstoconsidertheeffectofcontextonpreferencesforexplanations.Thecovariationprincipledoesnottakeanexplainer’spriorexpectationsintoaccount,orthereasonforexplaining.However,(Lalljeeetal.,1982)showsthattheexplanationspeopleseek,ratherthanbeingdeterminedbyabstractcriteria,varywithcircumstances:unexpectedbehaviorrequiresmorecomplexexplanationsthanexpectedbehavior,andislikelytorequiremoreofbothsituationalandpersonalelements.
4
Aknowledgestructureapproach:LalljeeandAbelsonquestionattributiontheory’sbasicap-proach,andsuggestthatitsproblemscanbeovercomebyadoptingaknowledgestructureapproachtoattribution.Theydistinguishtwotypesofexplanation:constructiveandcontrastive.Inconstruc-tiveexplanation,peopleexplaineventsintermsofknowledgestructuressuchasscriptsandplans(Schank&Abelson,1977).Incontrastiveexplanation,theyexplainthembyshowingwhyeventsdeviatedfromexpectationsprovidedbyknowledgestructures.Forexample,“Johnlefthisbicycleunlocked”mightbeexplainedintermsofgoalreversal:perhapsratherthanhavingthenormalgoalofwantingtoprotectit,heactuallywantedtogetridofit.
Ourtheoryfollowsthebasiclinesofthisapproach,accountingforanomaliesthroughbothconstructiveexplanation(tounderstandthesurprisinginformation)andcontrastive(toaccountforthefailureinpreviousexpectationsorbeliefs).Inaddition,welookathowpreferenceforexplana-tionsisaffectedbygoalsbeyondthegeneraldesiretofillknowledgegaps,tofurtherspecificaimsoverarchingtheunderstandingprocess.
Excusetheory:Researchonattributionhasexaminedtheinfluenceofoneclassofoverarchinggoalontheattributionprocess:thegoaltoabsolvetheexplainerfromblame.Excusetheorystudieshowthedesiretoformexcusesmakespeoplemanipulatethetypesoffactorstouseinattribution,toblameexternalinfluencesfortheirownbadperformance(forexample,(Mehlman&Snyder,1983)or(Snyderetal.,1983)).Excusetheory’sdemonstrationthatgoalsinfluenceexplanationisconsistentwithourview.However,weconsiderevaluationwithinaknowledgestructureframework,ratherthanattributiontheory,inordertoaddressthespecificknowledgerequiredfromanexplanation,andconsidertheinfluenceofawiderrangeoverarchinggoals.
3.2Philosophicalviews
Muchofthephilosophicalinvestigationofexplanationhasattemptedtoestablishformalrequire-mentsforexplanations,independentlyofcontext,butsomeapproacheshavetakenaviewmuchclosertoourgoal-basedperspective.Forexample,Hansonpointsoutthatdifferentexplainerswouldfocusondifferentaspectsofafatalvehicleaccident:
Thereareasmanycausesofxasthereareexplanationsofx.Considerhowthecause
5
ofdeathmighthavebeensetoutbyaphysicianas‘multiplehaemorrhage’,bythebarristeras‘negligenceonthepartofthedriver’,byacarriage-builderas‘adefectinthebrakeblockconstruction’,byacivicplanneras‘thepresenceoftallshrubberyatthatturning’.(Hanson,1961,page54)
Likewise,Mackie(1965)discussestheneedofexplanationstoaidinmakingthedistinctionsimportanttoaparticularexplainer.Inthisview,explanationisconductedagainstthecausalfieldofsituationstobedistinguishedbytheexplanation,andvarieswiththatfield.Thismakesrequire-mentsforexplanationstronglycontext-dependent:anexplanationof“whydidthecarcrashgoingaroundtheturn?”wouldbedifferentifthecausalfieldwereotherturns(inwhichcasetheexpla-nationmightbetheturn’ssharpness),orifitwereotherinstancesofthecargoingaroundthesameturn(inwhichcasetheexplanationmightbethatthistime,thedriverwassleepy).VanFraassen(1980)arguesinfavorofHanson’sview,andaccountsforthechoiceofcauseswithanideasimilartothecausalfield.However,ourapproachdiffersinexaminingtheneedsthatgeneratetheback-groundforexplanation,andshowinghowparticulargoalsdetermineconcreterequirementsthatanexplanationmustsatisfy.
3.3AIapproaches
Inartificialintelligence,thequestionofexplanations’goodnesshasbeeninvestigatedinthreemainareas.Researchinexpertsystemsexplanationhasconcentratedonthequestionofexplanations’goodnessforexplainingsystembehavior,forthebenefitofthesystemuser;researchinexpla-nationfortextunderstandinghasconcentratedonhowtoselectvalidexplanationsfromarangeofhypotheses;andexplanation-basedlearningresearchhasprimarilyconsideredtheproblemofdeterminingexplanations’goodnessforlearningtoimproveperformanceonconceptrecognitionandsearch.Wediscussbelowtheapproachesofeacharea.3.3.1Expertsystemsexplanation
Researchonexpertsystemsexplanationhasinvestigatedtheproblemofgeneratingexplanationsofexpertsystembehaviorthataresufficienteithertoeducatetheuseraboutthetaskdomain,orto
6
justifysystemdecision-making(Shortliffe,1976).Thedesiretoprovidetheneededinformationhasprompteddevelopmentofmanyexplanationsystems,includingsystemsthatcanshownotjusttheirdecisionpaths,butthereasoningunderlyingthosepaths(Swartout,1983);systemstodeviseexplanationsthatareappropriatetotheuser’spriorknowledgelevel(Paris,1987);andsystemsthattreattheexplanationprocessasacontinuingdialogue,allowingclarificationsandelaborationstobeofferedinresponsetofollow-upquestions(Moore&Swartout,1989).Ourinvestigationtakesacomplementaryview,somewhatclosertothatoftheuserofsuchsystemsthanthesystemsthemselves:weexaminehowanunderstanderwithparticularknowledgeandgoalscandecidewhetheragivenexplanationissufficient,orwhethertoaskadditionalquestions.3.3.2Selectingexplanationsforunderstanding
Asdiscussedintheintroduction,muchAIresearchonexplanationevaluationhasbeenaddressedtowardsdecidingexplanations’likelyvalidity.Forexample,researchonexplanationinstoryun-derstandinghasreliedprimarilyonfixedstructuralcriteriaforchoosingbetweencompetingex-planations,suchasfavoringexplanationsinvolvingshortexplanatorychains,orfavoringexplana-tionswiththemoststructuralcoherence(e.g.,(Granger,1980),(Wilensky,1983),(Ng&Mooney,1990)).
However,theexamplesinourintroductionshowthatvalidityaloneisnotenoughtoassureanexplanation’sgoodness:anexplanationmaybevalidwithoutbeinguseful.Infact,validitymayactuallybeundesirableinthecontextofcertainexplainergoals,asisshownbythefollowingscenefromthemovieBreakingAway:
Aused-carsalesmanistakingaprospectivebuyeroutonatestdrive.Hestopssud-denlytoavoidabicyclist,andthecardies.Hetriesfranticallytostartit,buthecan’t.Heexplainstothebuyer:“Imusthaveputexpensivegasinitbymistake.Thisbabyjusthatesexpensivegas.”
Althoughthesalesmanknowshisexplanationisinvalid,heselectsitbecauseitserveshispurposebetterthanthetrueexplanationofthecar’sbadcondition.Notonlydoesitdivertblamefromthe
In(Leake,inpress),weargueforevaluatingexplanations’validityintermsofcontent-basedcriteriaratherthansolelystructuralones,andpresentacontent-basedapproachtodecidingvalidity.
7
car’sconditiontothesalesman’smistake,butitalsointroducesanewfactortoswaytheprospectivebuyertowardsbuyingit:thatthecarisinexpensivetooperate.3.3.3Operationalityinexplanation-basedlearning
Explanation-basedlearning,inwhichanexplanationisusedtoguidegeneralization,isapowerfulmeansofcategoryformation,oftenallowinglearningfromsingleexamples(Mitchelletal.,1986;DeJong&Mooney,1986).Thedesiretoassurethatusefulconceptsareformedhaspromptedstudyofwhatdeterminesanexplanation’soperationality—itssuitabilityforusebythesystemperfor-manceelement.(Thenotionofoperationalityoriginatedwithasomewhatdifferentformulationin(Mostow,1983).)
InmostEBLresearch,operationalitycriteriaaimedtowardsefficientrecognitionofconceptinstances,orcontrolofsearchinproblemsolving.Criteriausedforjudgingtheoperationalityofaconceptformulationrangefromstaticannotationofpredicateswiththeireaseofevaluation(Mitchelletal.,1986),todynamictechniquesbasedonsystemknowledge(DeJong&Mooney,1986),totechniquesdirectlyreflectingtheutilityofanexplanation,usingestimatesandactualmeasurementsofrecognitioncostversusbenefittothesystem(Minton,1988).
Researchonoperationalityforconceptrecognitionhasledtotheidentificationofsignificantcharacteristicsofoperationalityforthattask,suchastheoperationality/generalitytradeoff(e.g.,(Segre,1987)).Becauseoperationalityhasbeenstudiedforsofewtasks,therehasbeensometendencytoassumethatsuchpropertiesapplytooperationalityjudgementsforanytask.However,(Keller,1988)pointsoutthatexistenceofanoperationality/generalitytradeoffdependsonspecificassumptionsunderlyingtherecognitiontask,andthatthetradeoffdoesnotexistforeveryuseofexplanations—amoregeneralexplanationmayactuallybemoreoperationalaswell.Forexam-ple,ateachergeneratinganexplanationforastudentmayfindamoregeneralexplanationmoreoperational,forthetaskofextendingtherangeofassignmentsastudentcansolve.Thusinordertounderstandoperationality,weneedtoconsiderthewidevarietyoftasksforwhichexplanationsareused.
Keller’sprogramMetaLEX(Keller,1987)reflectsthedynamicnatureofoperationalitybynotrelyingonfixedoperationalitycriteria.Instead,itsoperationalitycriterionisaninputtothesystem,andcanreflectcurrentgoalsandgoalpriorities.Consequently,thespiritofthisworkis
8
quitesimilartoours,thoughitdoesnotaddressthequestionofidentifyingtherangeofpossiblepurposesforexplanation.(Southeretal.,1989)alsopresentsanargumentcloseinspirittoours—thatitisessentialtobeabletogenerateexplanationsfromagivenviewpoint—andidentifiesclassesofexplanationsthatstudentsmightseekwhenstudyingcollege-levelbotany.However,sincethatworkconcentratesontutoringapplications,itdoesnotneedtoconnecttheclassestoover-archinggoalsthatmakethemimportant,beyondsimplydoingwellinacourse.
Theaboveapproachesconcernthelevelofelaborationtousewhenexplainingagivenconcept.Althoughmanyexplanation-basedsystemstakeasinputtheconcepttoexplain,approacheshavealsobeenadvancedtoselectusefulconceptstoacquire.Theyarebeyondthescopeofthispaper;foradiscussionofsomeofthoseissues,see(Kedar-Cabelli,1987),whichexamineshowthepurposeoffindingobjectstouseinplansguidesselectionofconceptstoexplain,or(Schank,1982;Riesbeck,1981;Hammond,1989;Leake,1991),whichaddresshowtheneedtorepairanexpectationfailurepromptstheexplanationeffort.
4Atheoryofgoal-basedevaluation
Ourworkconcentratesonevaluatingexplanationsgeneratedforanomalousstatesoreventsthatanunderstandernoticesineverydayunderstanding—conflictswithitsbeliefsandexpectations.Theseanomaliesshowthattheunderstander’sworldmodelisflawedinsomeway,sincetheworlddiffersfromitsexpectationsorbeliefs.Inordertorespondappropriatelytoprotectitsgoals,andtotakeadvantageofchangesintheworld,theunderstanderneedsadditionalinformation.Forexample,someonefiredfromajobmayhavemanyreasonstotrytodiscoverwhythefiringoccurred,suchasavoidingfuturefirings,protestingthecurrentone,orpreparingtocounterbadreferenceswhenapplyingfornewemployment.Toillustratetherangeofpurposesthatmayarise,andtheireffectonexplanation,weconsiderthefollowingexample:
CompanyXwasbeleagueredbyhightaxes,foreigncompetition,andout-datedequip-ment,despitelowlaborcostsduetobeingnon-union.Rumorsofproblemsspread,andthecompany’sstockplummeted,butitsmanagersannouncedtheirdecisionnottohavelayoffs.Thenextweek,itwasrumoredthattheywouldlayoff20percentoftheirworkforce.
9
Becausethelayoffsviolatethemangers’pledge,theyareanomalous,andmightpromptexplana-tion.Actorsinvolvedintheincidentwouldbelikelytohavegoalsaffectedbyit,andachievementofthosegoalswouldoftenrequireparticularinformation.Theseinformationrequirementsdeter-minewhichexplanationsaresufficient:
1.Someonewhoknewaboutthemanagers’pledge,andconsequentlydidnotbelievethattherewouldbelayoffs,wouldwanttoverifythatthelayoffswouldreallyoccur.Thegoalofmaintainingaccuratebeliefspromptsaplantosubstantiatethelayoffs.Thispromptstheexplanationpurposeofconvincinglyconnectingthelayoffstotrustedinformation.Forthispurpose,asatisfactoryexplanationmightbeanewspaperfoundasecretcompanymemofromthecompanypresident,describingthetimetableforthelayoffs.
2.Thesamepersonmighthavethegoalofavoidingfutureincorrectpredictionsinsimilarsituations.Oneplantoachievethatgoalistoexplainwhythecurrentbeliefwentwrong,andrepairthesourceoftheproblem.Herethepurposeofexplanationwouldbeaccountingforthebadpredictionintermsoffalsepriorbeliefs.Iftheproblemwasthatthemanagerhadbeenbelievedtrustworthy,butwasactuallydishonest,thatexplanationwouldaccountfortheexpectationfailure,andpreventtheexplainerfrombeingmisleadbythemanageragain.3.Aworkerwhowassurprisedtobelayedoffmightwanttoavoidbeingunemployed,byfindinganewjobbeforebeinglayedoffnexttime.Forthispurpose,asuitableexplanationmightbethelayoffswereinevitablebecauseofpressuretoreducecoststoshoreupthecompany’sfallingstock:giventhatthisisavalidexplanation,thedangeroffuturelayoffscouldbepredictedbywatchingthestockprice.
4.Inalocalpolitician,thelayoffsmightpromptthegoalofimprovingthearea’seconomichealth,byendingthelayoffs.Thisgivesrisetotheexplanationpurposeoffindingfeasiblerepairpointsforthecurrentsituation,byexplaininghowthelayoffsarecausedorenabledbyfactorsthatareundergovernmentcontrol,andwhoseremovalwillrestorethedesiredsituation.Forexample,iflayoffsresultedfromhightaxes,apossibilitywouldbetolowertaxesinordertomakethefactoryagainprofitable,andhavetheworkerscalledback.5.Aworkerwhowonderedwhethertolookforanewjob,orsimplywaittobecalledback,wouldwanttoknowhowlongthelayoffswerelikelytolast.Thiswouldprompttheexpla-10
nationpurposeofclarifyingthesituationtohelpformpredictionsofthelayoffs’duration,whichmightinvolvefindingifthelayoffsresultedprimarilyfromlong-termfactors,suchasforeigncompetition,versusshort-termones,suchastemporaryoverstocks.
6.Aworkerstillemployed,whowantedhisjobtobemoresecure,mightwanttopreventfuturelayoffs.Thiswouldprompttheexplanationpurposeoffindingpotentialcausesofthelayoffsthattheworkercanaffect.Ifthefactory’spreviouslackofunionizationresultedinacontractthatgaveemployeesnosecurity,enablingthelayoffs,theworkercouldrespondbystartingaunion.(Therequirementsforpreventinganeventarenotnecessarilythesameasforitsrepair:unionizationislikelytobeaneffectivepreventativeforlayoffs,butafterworkershavealreadybeenlayedoff,anewunionisunlikelytomakethecompanyrescindthelayoffs.)7.Themanagerwhoorderedthelayoffsmightwanttoavoidnegativepublicity,anddecidetodosobydeflectingblame.Oneexplanationpurposeforthisgoalwouldbeidentifyingotheractors’contributionstotheoutcome,asbyexplainingtherolethatanoutsideexperthadinshapingthedecision.
8.Theownerofanotherfactorymightwanttoimproveitsprofitability.Thisgoalmighttriggertheplanofanalyzingothermanagers’decisions,tolearnbettermanagementstrategies.Thiscouldprompttheexplanationpurposeofdecidingwhytheothermanagerschosetohavelayoffs,asopposedtoalternativeresponsestothecompany’sproblems,suchasincreasingadvertisingtoincreasedemandforproducts.Accountingfortheirsurprisingchoicemightshowimportantfactorsthattheownerwouldneedtoconsiderinsimilarfuturedecisions.Todeterminethosefactors,theownerwouldhavetheexplanationpurposeoffindingparticulartypesofcauses:thegoalsandgoalprioritiesthatenteredintothedecisionoflayoffsversusadvertising.
9.Abusinessconsultantmightwanttodevelopatheoryofhowdemographictrendsforcelayoffsindifferentindustries.Aplanforthatgoalistoshowhowthetheoryaccountsforparticularepisodesoflayoffs,whichwouldprompttheexplanationpurposeoffindingcausesofthecurrentlayoffsthatarerelevanttothetheory.
Eventhoughalltheaboveactorsareexplainingthesameevent,eachhasdifferentneedsforinformation,promptingadifferentexplanationpurpose.Althoughwecanimaginesingleexplana-11
tionsthatwouldbeusableformultiplepurposes,anexplanation’susefulnessformultiplepurposesisnotassured:noneofthesampleexplanationsaresufficientforanypurposesbeyondtheoneeachillustrates.
Ourexamplesidentifyninemajorexplanationpurposes.Althoughwedonotclaimthattheyformanexhaustivelist,thesepurposesaresufficienttodemonstratethatthereisawiderangeofgoal-basedpurposesforexplanation,including:1.Connecteventtoexpected/believedconditions.2.Connecteventtopreviouslyunexpectedconditions.3.Findpredictorsforanomaloussituation.
4.Findrepairpointsforcausesofanundesirablestate.5.Clarifycurrentsituationtopredicteffectsorchooseresponse.6.Findcontrollable(blockableorachievable)causes.7.Findactors’contributionstooutcome.
8.Findmotivationsforanomalousactionsordecisions.9.Findawithin-theoryderivation.
Ourbasicmodelofgoal-drivenexplanationisthatanomaliesshowthattheworldisdifferentfromexpected,sothatgoalsandplansmayneedtobere-considered.Thedesiretoprofitfromthesituation,ortoavoidbadeffectsthatmightresult,triggersselectionofnewgoals,whichtriggerplanstoachievethem.Theseplansgenerateneedsforinformation.Basedonthoseneeds,anexplainerhasanexplanationpurposetoconstructanexplanationreflectingcertainaspectsofthesituation,andevaluationmustconfirmthatthoseaspectsareincludedintheexplanation.Table1sketchesthisprocess,showinghoweachofthepurposesabovecanarisefromageneralgoal,andastrategytoachievethegoal.Eachexplanationpurposedeterminesspecifictypesofinformationthatanexplanationmustprovide.
12
Sometimesananomalywillsuggestmorethanonegoal,causingmultipleexplanationpur-posestobeactivesimultaneously.Forexample,ifsomethinghappensthatisbothsurprisinganddesirable,theexplainermightwanttofindhowtorecognizewhenitislikelytooccuragain,toprofitfromit,andtoknowwhomtocreditwithbringingitabout,toencouragethatpersontobringitaboutagain.Ourtheorydealsonlywithevaluationofexplanationsoncethepurposehasbeenselected;thesequenceofstepsfromanomalydetectiontonewgoals,andplansgivingrisetorequirementsforinformationtoachievethem,isatopicforfutureresearch.
Thefollowingsectionsdiscusstheimplementationofevaluationcriteriainacomputersystemthatjudgesexplanationsforarangeofexplanationpurposes,acceptingthemiftheyincludetheinformationneededforthosepurposes.
5Acomputermodel
ACCEPTERisastoryunderstandingprogramthatrequestsexplanationswhenitdetectsanomalies—conflictsbetweennewinformationanditspriorbeliefsorexpectations.Sinceananomalouseventindicatesthatthesystem’sunderstandingisincorrect,itsignalsthattheremaybeunexpectedrisksoropportunities,andpromptsnewgoalsforanunderstander.GoalstoguideevaluationaregiventoACCEPTERasinput,anditevaluatesexplanations’appropriatenessforthosegoals.Thesys-temprocessesabout20simplestoriesofanomalousevents,includingstoriesofthespaceshuttleChallenger’sdisaster,thewarshipVincennes’accidentalshootdownofanIranianairliner,celebritydeaths,andautomobiledefects.Fortheseanomalies,itevaluatesatotalofabout30explanations.Theappropriatenessofeachexplanationcanbeevaluatedforpredictingsimilarevents,preventingtheirrecurrence,repairofthecurrentsituation,andassignmentofblameorresponsibility.Theprogramhasbeenusedbothasastand-alonesystem,andastheexplanationevaluationcomponentinSWALE,astoryunderstandingsystemthatusesinformationfromACCEPTERtoguideexplanationofnoveleventsinthestoriesitprocesses(Schank&Leake,1989;Leake&Owens,1986;Kass,1986;Kass&Leake,1988).SWALEusestheresultantexplanationstoac-countfornovelevents,toformnewexplanatoryschemas,andtoguideindexingofthoseschemasinmemory.
AfterdiscussingACCEPTER’sevaluationcriteria,wereturntoACCEPTER’sroleinSWALE,
13
Table1
Asketchofhowthenineexplanationpurposesarise.Goalstodealwithasurprisingsituationtriggerplansforwhichinformationisneeded,promptinganexplanationpurpose.
Goal
Plan
ExplanationpurposeConnecteventtoexpected/-believedconditions.Connecteventtopreviously
unexpectedconditions.Findpredictorsforanoma-loussituation.Findrepairpoints.
Clarifysituationtopredictef-fects.
Findachievablecauses.Findactors’contributionstooutcome.
Findmotivationsforadver-sary’sunexpectedactions.Buildwithin-theoryderiva-tion.
Preventbadeffectsofactingonfalseinformation.
1.Confirmreasonablenessofnewinformation.
2.Findsourceofflawinpre-viousinformation.
Predictsimilareventsintimetoprepare.Executerepair.
Dealwithimportantramifica-tionsofanomaly.Re-causeevent.
Punishcurrentactorstodeterfutureperpetrators.
Predictandrespondtohisac-tions.
Usetheorytoaccountforun-expecteddata.
Minimizebadeffects/maxi-mizegoodeffectsinsimilarfuturesituations.
Usemalfunctioningdevice.Protectcurrentplans.Re-achievethegoodeffectscausedbyanomalousevent.Preventrecurrenceofsurpris-ingbadstate.Counteradversary.Refine/demonstrateatheory.
14
toexaminetheadvantagesofgoal-basedevaluationtoanexplanation-basedunderstandingsystem.
5.1ACCEPTER’sbasicalgorithm
ACCEPTERtakesasinputastoryrepresentedintermsofConceptualDependencytheoryprim-itives(Schank,1972),orintermsofschemaspackagingsequencesofthoseprimitivestorep-resentstereotypedsequencesofactions.Forexample,aschemamightrepresenttheeventsin-volvedineatingatarestaurant,suchasentering,beingseated,beingbroughtmenus,ordering,etc.TheseschemasarerepresentedinACCEPTER’smemoryasmemoryorganizationpackets(MOPs)(Schank,1982).
ACCEPTERprocessesstoriesonefactatatime,updatingitsbeliefsandgeneratingexpecta-tionsforlaterinputsfromthestory.Forthisroutineunderstanding,ACCEPTERusesschema-basedunderstandingprocessmodelledon(Cullingford,1978),integratingnewinformationintoadynamicmemory(Schank,1982;Lebowitz,1980;Kolodner,1984).Asitintegratesinputfactsintomemory,itchecksforanomalies—conflictsbetweentheinputsanditsbeliefsorexpectations.ACCEPTERimplementsatheoryofpattern-basedanomalydetectionthatallowsproblemstobedetectedwithcontrolledinference,butthatprocessisbeyondthescopeofthispaper.See(Leake,1989a)foranoverview,or(Leake,inpress)foramorecompleteaccount.
Whenananomalyisfound,ACCEPTERpresentstheanomalytotheuser,alongwithpossibleexplanations.Theseexplanationsareformedbyretrievingandinstantiatingexplanationpatterns(XPs)(Schank,1986)fromanXPlibraryinACCEPTER’smemory.Explanationpatternsrepresentbothspecificexplanationsofpriorepisodes,andmoregeneralstereotypedcommonsenseexplana-tions,suchasIfacarwon’tstart,itmayhaveadeadbattery,orIfastudentfailsatest,itmaybebecauseofnotstudyingenough,orIfacarhasadefect,itmaybebecauseofmanufacturer’sbadqualitycontrol.(Wedescribethestructureofexplanationpatternsbelow.)
FromthelistpresentedbyACCEPTER,theuserselectsacandidateexplanationpatterntoin-stantiate,andinputsanexplanationpurposetobetakenintoaccountwhenjudgingtheinformationthattheexplanationprovides.ACCEPTERthenperformstheevaluation,signallinganyproblemsitencounters.IntheSWALEsystem,ACCEPTER’sproblemcharacterizationsareusedtoindexintoalibraryofexplanationmodificationstrategies,toselectastrategyappropriatetotheproblem
15
(Kass,1986).Thestrategyisthenapplied,anditsresultre-evaluatedtoidentifyproblemsthatremain,ornewproblemsintroducedbytherepair.Inthestand-alonesystem,theusercanrespondtoACCEPTER’sproblemreportbychoosinganalternativeexplanationthatavoidstheproblem,orselectingdifferentrole-fillersforanyuser-instantiatedrolesintheexplanation.Forexample,oneexplanationACCEPTERevaluatesfortheChallengerexplosionisthatRussiamighthavesab-otagedthelaunch.ACCEPTERsignalsaplausibilityproblem,sinceRussiawouldnotrisksuchadangerousconfrontationwiththeUnitedStates.AfterACCEPTERpointsoutthatproblem,theusercanre-instantiatetheexplanationwithanothersaboteur.IftheuserselectsLibya,ACCEPTERconsidersthenewexplanationmorereasonablebecauseofLibya’swillingnesstotakerisks.Figure1summarizesACCEPTER’sbasicunderstandingprocess.
5.2Representationofexplanations
Explanationpatternstracethereasoningneededtoaccountforanevent.Theyrepresentexplana-tions’structureinbelief-supportchains,whicharebeliefdependencynetworksthatincludefourcomponents:initialstatesorevents,hypothesizedasleadingtoanevent;internalbeliefs,inferredfromtheinitialhypothesesonthewaytotheconclusionstobederived;theconclusionsthemselves;andplausibleinferencelinkstracingtheinferenceprocessfrominitialbeliefstoconclusions.Forexample,theXPearlydeathfromlifeinthefastlanetracesthecircumstancesleadingtothedeathofstarssuchasJanisJoplinandJohnBelushi.Itsbelief-supportchainstartswithtwoba-sichypotheses:thatthedeceasedwasaperformer,andwasverysuccessful.OneofACCEPTER’sinferencerulesencodesthetendencyforstarperformerstobeunderconsiderablestress.Start-ingwiththeinferredbeliefthattheperformerisunderhighstress,thedesiretoreducestresscanbeinferred,andfromthisdesirethetendencytotakerecreationaldrugsasanescape.Takingrecreationaldrugssometimesleadstoanaccidentaldrugoverdose,fromwhichdeathisalikelyoutcome.Figure2isaschematicdiagramofthebelief-supportnetworkassociatedwiththisrea-soningchain.
Wecanimaginesituationsinwhichanylinkintheabovereasoningwouldfailtohold.Forexample,stressdoesnotnecessarilyleadtotakingdrugs,notdoesrecreationaldrugusenecessarilyleadtoanoverdose.Eachofthelinksissimplyaplausibleinferencelink,showinghowthe
16
Figure1:ACCEPTER’sbasicunderstandingprocess.
17
Figure2:ACCEPTER’sbelief-supportchainfortheXPearlydeathfromlifeinthefastlane.
18
hypothesesmaketheconclusionmorelikely.Foradetaileddescriptionofthestructureofbelief-supportchains,andthetypesoflinksused,see(Schank&Leake,1989).
6Explanationevaluationforroutineunderstanding
ACCEPTER’sexplanationevaluationisguidedbytwotypesofgoals.First,itsevaluationservesthebasicgoalofanunderstandertoaccountforeventsinthestoriesitprocesses,andtomaintainaccuratepredictions.Second,itservesdynamicallychanginggoalsbeyondroutineunderstanding,byevaluatingwhetherexplanationsprovidetheinformationnecessarytoachievethem.Inthissec-tion,wediscusshowACCEPTER’sevaluationcriteriajudgewhetheranexplanationprovidestheinformationneededtosatisfythegoalsofroutineunderstanding.Thefollowingsectiondiscussesevaluationcriteriaforexplanationsservingothergoals.
Whenanunderstanderencountersanomalies,theypromptknowledgegoals(Ram,1989)toreconciletheanomalieswithotherknowledge,bothtocorrecttheunderstander’spictureofthecurrentsituation,andtoavoidformingfaultyexpectationsinthefuture.Correctingitspictureofthecurrentsituationrequiresdeterminingwhythesurprisingevent(orstate)wasreasonable,inordertointegratetheanomalouseventintopreviousbeliefs;avoidingformingfuturebadexpectationsrequiresidentifyingtheflawinpriorreasoning(Leake,1988b;Collins&Birnbaum,1988).Evaluationforshowinganevent’sreasonableness:
Findingwhythesurprisingevent(orstate)
wasreasonablerequiresshowingwhytheeventshouldhavebeenexpected,giventhepriorsitu-ation.Toverifythatanexplanationprovidestheneededsubstantiation,ACCEPTERchecksthattheexplanation’santecedentsareconsistentwithpreviousbeliefs,expectations,orknownpatterns(Leake,1989a),andthatthebelief-supportlinksderivingtheeventarealsoconsistentwithitspre-dictiveknowledge.Forexample,ifwearesurprisedbyacar’shighprice,asalesmanmightshowthatthehighpriceiscausedbyqualitymanufacturingandunusualamenities.
Evaluationforidentifyingflawsinpriorreasoning:Avoidingformingfuturebadexpectationsrequiresexplainingtheflawinpriorreasoning.Iftheexpectationwasgeneratedbyapplyinga
19
standardknowledgestructure,theexplanationmustshowwhythatknowledgestructurewasinap-plicable,bypointingtoaspectsofthesituationthatweredistinctivefromthenorm,butpreviouslyoverlooked.(Inreal-worldsituations,itissimplyimpossibletoconsiderallpotentiallyrelevantfactorsinadvance.)Iftheexpectationarosefromreasoningaboutacausalchainorphysicalpro-cess,theexplanationcanidentifyblockagesinthechain,orunusualconditionsinterferingwiththeprocess.Forexample,ifweexpectbreadtorise,wemightexplainitsfailuretodosobytheyeastbeingputintohottapwater,whichwasmuchhotterthanwehadbelieved,andbeingkilledbythehightemperature.Inthiscase,thecookprobablythoughtthetemperatureofhottapwaterwaslower,andtheexplanationshowsthatthisbeliefmustberevised.Wecallthefactorsthatwerepreviouslyunexpected,orevendisbelieved,distinctivecausesoftheevent—theydistinguishtherealsituationandwhatwaspreviouslyconsidered.
Inordertoverifywhetheranexplanationconnectsaneventtodistinctivecauses,asystemneedstobeabletodeterminewhetherafactisdistinctiveinthecurrentcontext.Forexample,manycausesleadtotheChallengerexplosion,suchasdesignofthesolidrocketboosters(whichreliedonO-ringstoholdaseal),launchapprovalprocedures(whichallowedtheengineers’warningstobeoverridden),thehightemperatureoftheboosters’flames(thathelpedthemburnthroughtheseals),andthecoldnessofthelaunchday(whichmadethesealsbrittle,interferingwiththeseals’positioning,andmakingiteasierforflamestopenetrate).However,mostofthesefactorswereroutine:noproblemshadarisenfromthedesignandlaunchprocedures,ortheboosterflametemperatures,inpastlaunches.Consequently,anexplanationbasedonthemwouldnotsaywhytheshuttleexplodedonthatparticularlaunchbutnotonpreviouslaunches.
However,thecoldweatheronthelaunchdaydiddifferfromcircumstancesofpreviouslaunches.Sincethecolddaywasdistinctive,itwouldbereasonabletofearanotherexplosiononcolddays,andtoexpectsuccessfullaunchesonwarmerdays.Infact,whentheSpaceShuttlesweregroundedaftertheChallengerexplosion,manypeoplearguedthatthelaunchesshouldbeallowedtocontinueonanydaysthatwereaboveacertaintemperature.
ACCEPTER’sevaluationcriteriaareexpressedintermsofasetofrequirementsthatthean-tecedentsofanexplanationmustsatisfyinorderfortheexplanationtoprovidetheneededinforma-tion.Wecalltheclassesoffactorsevaluationdimensions;thedistinctivenessofcausesfrompriorexpectationsisoneofthesedimensions.Wediscusstheevaluationdimensionsindetailbelow.
20
7Beyondroutineunderstanding:evaluationformorespecificgoals
Theprevioussectionsketchedevaluationfortwoexplanationpurposes:connectinganeventtoexpected/believedconditions,inordertoconfirmitsreasonableness,andconnectinganeventtounexpectedordisbelievedconditions,inordertorepairfaultyknowledge.BoththesepurposesarisefromACCEPTER’sbasicunderstandinggoalofmaintaininganaccuratemodelofthestoriesitreads.
ACCEPTER’ssecondsetofexplanationpurposesisprovidedexternally,andreflectsothergoals.InaplanningsystemthatusedACCEPTERtomaintainitsworldmodel,thepurposeswouldbetriggeredbythegoalsandplansoftheoverarchingplanner.Inthecurrentstand-aloneversionofACCEPTER,thepurposesareselectedbyahumanuser.
ACCEPTERevaluateswhetherexplanationsincludetheinformationneededforfindingpre-dictors,findingrepairpoints,findingcontrollablecauses,andfindingactors’contributionstoanoutcome.Thesystemalsocombinesitsevaluationforotherpurposestojudgeexplanationsforahigher-levelgoal:blockingfutureoccurrenceofanundesirableoutcome.
ACCEPTER’sevaluationprocessistotracethroughthebelief-supportnetworkexplaininganevent,examiningthecausesinthenetworktoseeifsomesubsetofthosecausesprovidestheneededinformation.Ifsomesubsetofthosecausesincludesallneededtypesoffactors(e.g.,ifACCEPTER’spurposeistoconnectaneventtounexpectedconditions,anditfindsadistinctivecause),theexplanationisaccepted.Allrelevantcausesthesystemfinds,andadescriptionoftheteststheysatisfy,areoutputbythesystem,tofacilitateapplyingtheexplanation’sinformationinplansforoverarchinggoals.
Whileitwouldbepossibletosimplydeviseindependentevaluationproceduresforeachpur-pose,parsimonysuggestsanalyzingthepurposestofindsharedcomponentsofthetestsfordif-ferentexplanationpurposes,andusingthosecomponentsasbuildingblocksforevaluationpro-cedures.ACCEPTERbuildsitspurpose-specificevaluationproceduresfromteststhatevalu-atecausesalongnineevaluationdimensions:timeliness,knowability,distinctiveness,predictive
Althoughwesimplifythediscussionbypresentingthevaluesonthesedimensionsasyes/nodecisions,allactuallyfallalongacontinuum.
21
power,causalforce,independence,repairability,blockability,anddesirability.Inwhatfollows,wewilldemonstratehowexplanationpurposesrelatetoparticularinformationneeds,andhowtheneededinformationischaracterizedintermsofcombinationsoftheevaluationdimensions.Forexample,wewillshowthatinordertorepairanundesirabledevicestate,weneedtofindanycausesoftheproblemthatarestillineffect(timeliness),thatwecanrepair(repairability),andthatareunusualcomparedtothenormaldevicestate(distinctiveness).
Afteraninitialsetofdimensionswasdefinedforafewpurposes,wefoundthatneedsformanyofourotherninepurposescouldbedescribedbysimplyusingdifferentcombinationsofdimen-sionsfromtheinitialset,andwebelievethatonlyasmallsetofadditionaldimensionswouldbeneededforaddingotherpurposestothesystem.Thesectionsbelowdescribesomeofthedimen-sionsimplementedforACCEPTER’sexplanationpurposes,andsketchtheirimplementation.
7.1Evaluationdimensionsforprediction
Whenaneventsurprisesus,andwewanttoanticipateititinthefuture,weneedtoexplainwhatcauseditsoccurrence,inpredictitinsimilarfuturecircumstances.Inorderforagroupofcausestobeusefulforprediction,itmustholdthat(1)occurrenceofthecausesmakestheeventlikely,(2)thecausehappenslongenoughinadvanceoftheeventforthepredictionittriggerstobeuseful,(3)oneofthecausesisunusualcomparedtotheexpectedsituation,sothatitgivesevidenceforthesurprisingeventasopposedtothepreviouslyexpectedone,and(4)thecausesarefactorsthatwearelikelytobeawareofinthefuture.Theserequirementscorrespondtofourevaluationdimensions:(1)predictivepower,(2)timeliness,(3)distinctiveness,and(4)knowability.Predictiveness:Evenifsomethingcausedanevent,itmaynotbepredictiveofthatevent.Forexample,eveniftheblowoutofatirewascausedbydrivingathighspeed,wewouldnotexpectablowoutthenexttimeweseeaspeedingdriver.Todeterminewhethercausesarepredictiveofanoutcome,ACCEPTERreliesonannotationsofthecausalrulesusedtoconnectthecausestotheoutcome:ifalltherulesconnectingthecausestotheoutcomearepredictive,thecausesareconsideredpredictive.
22
Timeliness:Apredictionisonlyusefulifitgivesenoughwarningtoletusdealbetterwiththepredictedevent.Forexample,supposeaNASAengineerexplainstheexplosionoftheSpaceShuttleChallengerby“theboostersburnedthrough,allowingflamestoreachthemainfueltank,causingexplosion.”Thatexplanationletsusexpectanexplosionthenexttimetheboostersburnthrough,butbythenitwillbetoolatetoabortthelaunch.However,anengineerwhorealizesthattheburnthroughwascausedbytheboostersealsbeingbrittle,duetocoldweather,couldpredictdifficultiesincoldweather,andavoidfutureexplosionsbyrefusingtoapprovelaunchesinweatherbelowacertaintemperature.
Forsomegoals,timelinessrequirementsdependoninformationwithintheexplanation.Forexample,ifthegoalispreventionofabadoutcome,theexplainerneedstopredicttheoutcomewhilethereisstilltimetoblockoneofthecauses.Inthiscase,ACCEPTERdeterminesfromtheexplanationtheamountofwarningneeded,byexaminingtheexplanation’sbelief-supportchaintofindtheearliestcausestheexplainercanprevent.Forothergoals,factorsexternaltotheexplanationdeterminetheneededamountofwarning.Forexample,someonehopingtoprofitfrompredictingstockpriceswillneedtopredicttheirfluctuationsintimetobuyorsellbeforethechangetakesplace.Thewarningneededisunrelatedtowhythestockpricechanged;itonlydependsonhowfastordersareprocessed.AlthoughACCEPTERhasnomechanismfordecidingneededtimelinessforthesegoals,theusercanmakeACCEPTER’sjudgementreflecttheirneedsbysimplyinputingthedesiredamountofwarning.
Tocalculatehowmuchwarningoneofthecausesgives,ACCEPTERaddsuptemporalsepa-rationsalongthelinksoftheexplanation’sbelief-supportchain,tofindouthowfarinadvanceoftheoutcomethecauseprobablyoccurred.
Distinctiveness:Asdiscussedabove,distinctivenessjudgeswhetherasurprisingeventwasitselfcausedbysomethingsurprising.Ifso,thatsurprisingcausemaybeusefulasapredictivefeatureoftheoutcome.
ACCEPTERjudgesacause’sdistinctivenessbycheckingwhetheritdeviatesfromstereotype-basedexpectationsthatwereineffectbeforetheanomaly.Theseexpectationsincludeexpectationstriggeredbyapplicationofschemasforstandardeventsinagivencontext,suchastheMOPforstandardeventsinarestaurantmeal,andstereotypesfortheactivitiesofbroadclassesofactors
23
(e.g.,thatathletesintrainingshouldavoidwildparties).(Foradescriptionofthesestereotypesandhowtheyareapplied,see(Leake,1989a)or(Leake,inpress).)Todeterminewhetherafactisdistinctiveinacontext,theprogramusesitsroutineunderstandingprocesstogeneratetheexpec-tationsforthatcontext,andcomparesthefacttothoseexpectations.
ThefollowingexampleshowsoutputfromACCEPTER’sformationofdistinctivenessjudgements.TheexplanationbeingconsideredisthatChallenger’sexplosionwascausedbythecombinationofthelaunch(whichenabledtheboosterflames)andcoldweather(whichcausedtheseals’brit-tleness).Thelaunchisroutine,soitisnotausefulpredictivefeature,eventhoughitiscausallyrelevant:
CheckingwhetherCHALLENGER’SSPACE-LAUNCHsatisfiestest(s)for\"DISTINCTIVENESS\".
ApplyingtestforDISTINCTIVENESStoCHALLENGER’SSPACE-LAUNCH.
UsingroutineunderstandingtocheckwhetherCHALLENGER’SSPACE-LAUNCHisstandardincontextofCHALLENGER’SROCKET-STRUCTURE.
BuildingupnewmemorycontextwithexpectationsfromCHALLENGER’SROCKET-STRUCTURE.
IntegratingCHALLENGER’SSPACE-LAUNCHintothatcontext.
CHALLENGER’SSPACE-LAUNCHsatisfiestherole-fillingpattern\"ROCKETsroutinelyfillroleSPACECRAFTinSPACE-LAUNCH\soit’sroutine....testfailed.
However,thecoldweatherisunexpected,soitisjudgeddistinctive,allowingproblemstobepredictedonfuturecolddays.
Knowability:Nomatterhowearlyapredictiveeventmaybe,itwillnothelpustopredictunlesswecanfindoutthatitoccurred.Forexample,weknowthattakeoverannouncementscausestock
Minoreditingoftheoutputhasbeendoneforreadability.
24
priceincreases,soitwouldbehelpfultopredictthemlongenoughinadvancetobuystock.Thedecisiontostartatakeoverhappensatleastafewhoursbeforetheannouncement,soitistimely,anditisalsopredictiveoftheannouncement.Unfortunately,itisusuallyuselessforprediction:thetakeoverdecisioniskeptsecret,sotheinvestorwillnotbeabletofindoutaboutituntiltheannouncementtakesplace.Knowabilitymeasureshoweasyitistoknowwhenaneventoccurs.Predictiveknowledgeneedstobeindexedunderfeaturesthatthesystemislikelytoknowabout,orthatitcancheckforroutinenesswithreasonablecost.
ACCEPTERdistinguishesbetweenthreelevelsofknowability:observablecauses,whicharelikelytobenoticedinroutineunderstanding,testablecauses,thatcouldbeknownbycarryingouttestingplansinthesystem’smemory,andundetectablecauses,whichcannotbedetectedbyknowntests,eveniftheoutcomeisimportantenoughtomaketestingworthwhile.(Ofcourse,differenttestscanrequireverydifferentlevelsofeffort,andthiscouldbeaddedtothetests’representa-tion,toallowACCEPTERtomakefiner-graineddistinctions.)Dependingontheimportanceofpredictingtheoutcome,theuserselectswhichlevelofknowabilitytorequire.ACCEPTERusestheheuristicsbelowtodecidewhethercausesareobservableortestable.Causesthatareneitherobservablenortestableareassumedtobeundetectable.
Judgingobservability:NodesinACCEPTER’smemorynetaremarkedwithinformationontheirusualobservabilitytosomeonenearby.Forexample,mostactionsareobservabletopeoplewhoarepresent,butthoughtsarenot.Observabilityinformationaboutspecificobjectandeventfeaturesisalsostored,indexedundertheobjectsandevents.Forexample,aperson’shaircolorisusuallyobservable,buthisbloodpressureisnot.Whennoobservabilityinformationisindexedundertheobjectoreventtype,observabilityinformationisinheritedfromhigher-levelabstractionsinACCEPTER’smemory.
Oneoftheprogram’sexamplesconcernsthedeathoftheracehorseSwale,whodiedunexpect-edlyatthepeakofhiscareer.WhenACCEPTERevaluatesusefulnessofdeathfromhorserace+heartdefectforpredictingfuturedeaths,itacceptsthehorseraceasobservable,because,initsmemorynet,horseracingisaspecificationofpublicperformance,andmostpublicperformancescanbeobserved.However,heartsarespecificationsofinternalorgans,andthephysicalstateofinternalorgansisnotusuallyobservable,sonotallthecausesareobservable—theexplanationisnotsufficienttoallowprediction.(Wenotethatthiscriterionisequivalenttopastapproachesfor
25
staticoperationalitycriteria(Mitchelletal.,1986),andsuffersfromthesameproblems;wepointtowardsanalternativedirectioninthesummarysectionbelow.)
Judgingtestability:Sometimespredictinganoutcomeisworththeeffortofperformingtests.Ifweknowalow-costplanforcheckingapredictivefeature,wecanperformthatplanperiodicallytogivewarningofproblemsahead.Forexample,anemployeeatYalechangedherbehaviorafterexplainingthecauseofenginedamagetohercar:
Xburnedoutanenginebydrivingwhenhercarwaslowonoil.Afterthatincident,shestartedcheckingtheoillevelwhenevershegotgas,tocorrectlowoilbeforedamaginganotherengine.
Peoplehavestandardtestsforfeaturesofsituationsthathaveimportanteffects,butarenotdirectlyobservable.Ifwewanttoknowthetemperatureoutside,wemightgotoawindowthathasathermometermountedonitsledge.Ifwethinkthatthebatteryofacarisdead,wemighttryturningontheradioorthelights.Ifwewanttoknowwhetherasteakissufficientlydone,wecanpressit,andseehowitspringsback.ACCEPTERjudgestestabilityofanexplanation’scausesbysearchingitsmemoryfortestingplansthatcandeterminewhetherthecauseholds.(Thetestsinitsmemoryaresimplyplaceholders;howtocarryoutthetestsisnotrepresentedinthesystem).IfACCEPTERfindsaplan,itjudgesthecausetestable.
TheoutputbelowshowsACCEPTERjudgingtheexplanationdeathfromhorserace+heartdefectforSwale’sdeath,toseeifitcouldbeusedbyanownertopredictandavoiddeathsinotherhorses.Theheartdefectisnotobservable,butistestablebydoinganelectrocardiogram.Consequently,theexplanationshowsthatanownercouldpredictproblems:byhavingavetdoanEKGonthehorsestheownerbuys,tofindanyheartdefects.
ApplyingtestforKNOWABILITYtoSWALE’SHEART’SHEREDITARY-DEFECTIVEORGANIC-STATE.
Searchingupabstractionnetforobservabilityinformation.SWALE’SHEART’SHEREDITARY-DEFECTIVEORGANIC-STATE
isprobablynotobservable,sinceitisa(n)ORGANIC-STATEofa(n)INTERNAL-ORGAN.
26
Searchingupabstractionnetforpointerstostandardtests.SWALE’SHEART’SHEREDITARY-DEFECTIVEORGANIC-STATEistestable,sinceORGANIC-STATEsofHEARTscan
bedetectedbythestandardtestELECTROCARDIOGRAM....testpassed.
7.2Evaluationdimensionsforrepair
Iftheanomalythatpromptsexplanationisadevicefailure,wemaywishtorepairthedeviceaspectsthatcausedthefailure.Thispromptstheexplanationpurposeoffindingrepairpoints.Fourevaluationdimensionsareimportantwhencheckingifanantecedentisagoodrepairpoint.Themostobviousrequirementsarethattheantecedenthavecausalforce(itmusthavecausedthebaddevicebehavior),andthatitberepairablebytheexplainer.However,notallcausesareworthrepairing.Ifsomeonewascarryingatelevision,andtrippedonsomeunevensteps,causinghimtodropanddamageit,theconditionofthestepswouldbeacauseofthedamage,andmightberepairable.However,repairingthestepswouldnotfixthetelevision.Thecausetorepairmustbeonewhosepresenceispredictiveofthedevicefailure’srecurrence,accordingtothepredictivenesscriteriadescribedabove.
Finally,evenifthereisacontinuingproblemthatwecanrepair,itwillnothelpifsomethingelsewillcausetheproblemagainassoonaswefixit.Forexample,droppingthetelevisionmighthavecausedapowersupplydefect,burningoutafuse.Fixingthefusebyitselfispointless:thebadpowersupplywillsimplyburnoutthereplacement.Thusweneedtofixthepowersupplyaswell.Thisexampleshowsthattheexplanationneedstotracebacktoacausewithindependencefrompriorcauses.Tojudgeindependence,ACCEPTERsimplyassumesthatacauseisindepen-dentfrompriorcausesunlessitiscausedbythecurrentstateofsomeobject.Causalforceandrepairabilityarediscussedinmoredetailbelow.
Causalforce:ACCEPTER’sinferencerulesdistinguishtwoclassesofconnectionsbetweenevents(orstates).Oneeventcausesasecondifitactuallybringsaboutthesecondevent,aswhen
27
aheartattackcausesdeath.Aneventispredictiveofanother,withoutnecessarilybeingacause,ifthefirstpromptsanexpectationforthesecond.Forexample,ifweareshockedbyanawfulmealinarestaurant,someonemightexplainitbysaying“allNewHavenrestaurantsarebad.”Theexplanationmayletuspredictfuturebadmeals,butitdoesn’tsaywhatcausesthelowquality.ACCEPTER’sinferencerulesareannotatedwithwhethertheydescribeacausalconnection,orapredictiveone(causalconnectionsthatholdinagivensituationmaybenon-predictive,iftheytraceanunlikelyoutcome:drinkingmilkcausesanallergicreactioninsomepeople,butwedonotnormallypredictthatreaction).
Repairability:Findingthecauseofabadstateonlyhelpsrepairifwealsoknowhowtofixit.Forexample,tracinganenginefailurebacktosomeobscurecomponentofthetransmissionwillbelittleusetomostpeoplewhoaretryingtodoaroad-sideemergencyrepair.However,iftheyfindthatawirehasshakenloose,orahosehascomeunattached,theycanmaketherepair.Tojudgerepairabilityofadevice,ACCEPTERsearchesmemoryforarepairplanindexedunderthedevice,andthestatebeingconsideredasapotentialrepairpoint.Ifatelevisionhadananomalouslybadpicture,ACCEPTERwouldlookatthecausesofthebadpicturegivenbytheexplanation,andseeifitcouldretrieveaplantofixanyofthem.Forexample,iftheexplanationattributedtheproblemtobadatmosphericconditions,itwouldbeunlikelytofindarepairplan.However,iftheproblemwerecausedbytheantennapointingthewrongway,aplanforfixingorientationsofsmallobjects—grabbingthemandmovingthem—couldberetrievedandapplied.TheoutputbelowgivesasampleofACCEPTER’srepairabilityjudgements.WhenitevaluatestheexplanationthatJohn’s“brandA”carwasdefectivebecauseofabadtransmission,itfirstcheckstoseewhetheritcanretrieveaplanforrepairingthetransmission.Itfindsnostoredrepairplansfortransmissions,orforanyoftheabstractionsoftransmissionsinitsmemory:
ApplyingtestforREPAIRABILITYtoTRANSMISSION-743’SLOWMECHANICAL-CONDITION.
Searchingupabstractionnetforpointerstostandardrepairplans....testfailed.
28
TRANSMISSION-743’SLOWMECHANICAL-CONDITIONisprobablynotrepairable,sincenostandardrepairplansarestoredunderanyofitsabstractions.
SinceACCEPTERfindsnostandardrepairplans,itcheckswhetherlaterstepsinthebelief-supportchainarerepairable.TheXP’sbelief-supportchainshowsthattheenginedefectiscausedbyboththefactthatthetransmissionisdefective,asabove,andthatthetransmissionisacom-ponentoftheengine.AlthoughACCEPTERfindsnorepairstrategyspecificallydirectedtowardsfixingthefactthatatransmissionisanenginecomponent,itdoesfindastrategyforrepairinganycomponentrelationshipthatcausesproblems:replacethecomponent.Thisstrategysuggeststhatreplacingthetransmissionisapossiblerepairplan:
ApplyingtestforREPAIRABILITYtoTRANSMISSION-743’SPART-OF-RELATIONSHIPtoBRAND-A’SENGINE.
CheckingrepairabilityoffeaturesofTRANSMISSION-743’SPART-OF-RELATIONSHIPtoBRAND-A’SENGINE.
Searchingupabstractionnetforpointerstostandardrepairplans.
BRAND-A’SENGINEASCONTAINEROFTRANSMISSION-743’S
PART-OF-RELATIONSHIPtoBRAND-A’SENGINEisrepairable,sinceCONTAINERsofPART-OF-RELATIONSHIPscanusuallyberepairedbythestandardplanREPLACE-COMPONENT....testpassed....Detailisacceptable.
7.3Evaluationdimensionsforcontrol
Whenananomalousstateoreventisundesirable,anunderstandermaywanttopreventitinthefu-ture.Oneplanforthisgoalistoblocksomeoftheevent’scausesdirectly;anotheristodiscourage
29
anyactorsresponsibleforthesituationfromcontributingtoitsrecurrence.(Likewise,ifanout-comeisdesirable,anexplainermaywishtofindhowtoachieveit,eitherdirectlyorbyinfluencingothers,butwewillnotconsiderthatpurposehere.)
Directlypreventingfutureoccurrenceofaneventinvolvesfindingpremiseswithcausalforce—thatcausetheoutcome—andthattheexplainercanblock(blockability).Anexplanationthatshowsblockablecausescanbeusedintwoways:first,theexplainermaybeabletopermanentlydisableoneofthecauses,sothatanyrepetitionofthesamecausalchainisimpossible.(Forexample,ifahousewasburglarizedbecauseathiefcouldenterthroughanopenwindow,thevictimcanblockrecurrencebykeepingthewindowsshut.)Second,ifitisimpracticaltopermanentlyblockanyofanevent’scauses(itmaybetoounpleasanttokeepwindowsclosedinthesummer),explanationneedstoshownotonlyhowtheoutcomecouldbeblocked,butalsohowtopredictaspecificinstanceoftheoutcomelongenoughinadvancetoblocktheprobleminthecurrentinstance.ThisprocedureisbasicallytheanticipateandavoidstrategysuggestedbyHammondforavoidingfailuresincase-basedplanning(Hammond,1989).Wediscussbelowsomeheuristicsforjudgingblockability,andhowtheyareappliedtojudgeexplanationsforanticipatingandavoidinganundesirableoutcome.
Blockability:Decidingwhatanexplainercanpreventisdifficult;thingsthatseemuncontrollableatfirstglancemayactuallybeeasytoinfluence.Forexample,ifapicnicisrainedout,itisnaturaltoaccepttherainasbeyondourcontrol,butitmightmightbeavoidablebyschedulingthepicnicduringthedryseason.Nevertheless,averysimpleheuristicissufficientforjudginganactor’sabilitytocontrolmanyevents:wecanassumethatactorswhovoluntarilyfillactorrolesinevents,orprovideotherrole-fillersforthem,canprobablyblockthoseevents.
Areal-worldexampleoftheimportanceofactorrolesinblockinganoutcomecomesfromtheChallengerexplosion.EachareaofNASAattemptedtofindwaystopreventsimilarsitua-tionsarising,anddifferentdivisionsfocusedondifferentcausesoftheproblem,dependingontheexplainers’influence.Aftertheexplosion,accordingtotheastronautJohnCreighton:
[Everyonehadadifferentidea]ofwhatwedidn’tthinkworked.Ifyou’reanengineman,youwanttheenginefixed;ifyou’reinchargeofsomethingelse,youwantthat
30
fixed.
ACCEPTER’sblockabilitychecksconsiderthreewaysapersoncanbeinvolvedinanevent:asanactorwhoisimmediatelyinvolved;asadirectoroftheaction,whoisnotimmediatelyinvolved,butwhohasauthorityoveritsprogression;andasasupplieroftheobjectsoractorsthatthedirectorselects.
Actorsinaneventmaybeabletoblockitbyrefusingtoparticipate.Directorsmayblockitbyorderingactorsundertheircontrolnottoparticipate,bycontrollingthesettingforevents(locale,timeofoccurrence,orfeaturesoftheenvironment),bychangingwaysofselectingtheobjectsused,toavoidusingobjectsthatareparticularlylikelytocontributetoabadoutcome,orbychangingobjectsupplierstoavoidsuchobjects.Supplierscanalsoblockoutcomesbycontrollingtheobjectstheymakeavailable.Table2sketcheshoweachofthesemeansofexplainercontrolenteredintostrategiesforpreventinganotherspaceshuttledisaster.
ACCEPTER’sbasicprocedurefordecidingblockabilitybyagivenpersonistousetheexpla-nationtofindaperson’sinvolvementintheoutcome,andthenseeifthatpersonisinvolvedasanactor,director,orsupplierofanobject(whichACCEPTERchecksbyseeingifthatpersonisitsowner).IfsoACCEPTERassumesthatthepersoncouldblocktheevent.Itthencheckswhethertimelypredictionispossible,toallowthepersontoanticipatetheoutcomeandexertcontroltoblockitsoccurrence.
Forexample,theoutputbelowshowshowACCEPTERdecidesthatthespaceshuttle’sastro-nautscouldpreventfutureexplosions.TheantecedentbeingconsideredisChallenger’slaunch,andACCEPTERfirstverifiesthatthelaunchisacauseoftheexplosion,toseeifblockingthelaunchcouldbeaneffectivewaytopreventtheoutcome:
Checkingwhethersomeantecedentsatisfiesthefollowingtests:CAUSALFORCETEST(doesfactcauseconsequent?),and
BLOCKABILITY+TIMELINESS(canCHALLENGER’SSPACE-LAUNCH’sASTRONAUTblockafterpredictingoutcome?).
ApplyingtestforCAUSALFORCE(doesfactcauseconsequent?)toCHALLENGER’SSPACE-LAUNCH.
Newsweek,October10,1988.
EachcausallinkisrepresentedasanXPinACCEPTER’smemory;theoutputonlyshowsthenamesofthelinks.
31
Table2
StrategiesforblockingrecurrenceoftheChallengerdisaster
Real-lifeapplicationofthepreventionstrategiesforcontrolbyactors,directorsandsuppliers.
Controlbyactors
Refusetoparticipate
Aftertheexplosion,astronautssaidthattheywouldn’tflyuntiltheshuttleswererepaired.
Controlbydirectors
Changesettingfortheevent
–Changelocalefortheevent
SomepeoplesuggestedchangingthelaunchsitetoHawaii,wheretheweatheriswarmer.–Changethetimeoftheevent
Engineersadviseddelayinglaunchingwhentheweatherwasbelow53degrees.–Changefeaturesoftheenvironment
NASAinstalledheatersonthelaunchpadtowarmboostersbeforelaunch.
Changerole-fillerchoice
–Applyteststoruleoutbadobjects
SomepeoplesuggestedNASAshouldinspecttheboostersealsafterdeliveryoftheboosters.NASArejectedthisbecausetestswouldrequiredisassemblythatmightintroducenewdefects.–Changesupplierofobject
SomeadvocatedstoppingusingboostersmadebyMortonThiokol.
Controlbysuppliers
Blockaccesstoaclassofrole-filler
NewshuttlemanufacturingwasfrozenbycongresswhiletheChallengerinvestigationwenton,inordertoavoidrepeatsoftheexplosion.
Changedesign
MortonThiokolredesignedtheboosters,withbetterseals.
32
CheckingtheconnectionbetweenCHALLENGER’SSPACE-LAUNCHandCHALLENGER’SEXPLOSION.
TestingifCAUSAL-MOP-SCENE:LAUNCH->IGNITIONsatisfiestestforLINKCAUSATION....testpassed.
TestingifCAUSAL-MOP-SCENE:IGNITION->HIGH-PRESSUREsatisfiestestforLINKCAUSATION....testpassed.
Testingif
BRITTLE-SEAL+CONTAINER-SEAL+CONTENTS-PRESSURE=>CONTAINER-EXPLOSIONsatisfiestestforLINKCAUSATION....testpassed.
TestingifEXPLOSION-IN-COMPONENT=>EXPLOSION-IN-WHOLEsatisfiestestforLINKCAUSATION....testpassed.
...Alllinksareacceptable....testpassed.
Sincetheexplanationshowsthatthelaunchcausesarocketbooster’sexplosion,whichinturncausestheshuttleasawholetoexplode,blockingthelaunchwouldblocktheexplosion.Thisidentifiesitasacausethatwouldbeworthwhiletoblock,soACCEPTERcheckswhetheranastronautcouldblockit.Itfirstcheckswhethertheastronautcontrolstheavailabilityofobjectsrequiredtofillrolesinthelaunch(whichtheastronautdoesnot),orwhethertheastronauthascontroloverwhethertoparticipateinthelaunch:
CheckingifCHALLENGER’SSPACE-LAUNCHisblockable.
CheckingifCHALLENGER’SSPACE-LAUNCH’sASTRONAUTcontrolledoutcomebycontrollinganeededobject....Noactor-controlledobjectsfound.
CheckingifCHALLENGER’SSPACE-LAUNCH’sASTRONAUTcontrolledoutcomethrougharolehefilled.
33
CHALLENGER’SSPACE-LAUNCH’sASTRONAUTmight
havebeenabletopreventCHALLENGER’SSPACE-LAUNCH,byrefusingtobeitsASTRONAUT,sincethatisavoluntaryactorrole.
Fromthisinformation,ACCEPTERconcludesthatthelaunchisablockablecause.Thenextquestioniswhetheranexplosioncanbepredictedbeforethelaunch,sotheastronautcanstopthelaunchintime.Becausethelastcauseoftheexplosionthattheastronautcontrolsisthelaunch,preventingfutureexplosionsisonlypossibleiftheexplanationshowshowtopredictexplosionbeforethelaunchoccurs.Toknowhowmuchwarningwouldbeneeded,ACCEPTERfirstusestheexplanationtodeterminehowfarinadvanceoftheexplosionthelaunchoccurs,andthencheckswhethertheexplanationallowspredictionwiththatamountofwarning.(ACCEPTERusesacoarse-grainedtemporalrepresentation,withtemporalseparationsrepresentedasNONE,MINUTES,HOURS,DAYS,WEEKSandYEARS.)
CheckingifXPallowspredictionofoutcomebeforeCHALLENGER’SSPACE-LAUNCHoccurs.
CalculatingamountofwarningneededtopredictbeforeCHALLENGER’SSPACE-LAUNCHoccurs.
CHALLENGER’SSPACE-LAUNCHleadstoROCKET-IGNITION-41immediately.
ROCKET-IGNITION-41leadstoGAS-42’SHIGHPRESSUREMINUTESafterwards.
GAS-42’SHIGHPRESSUREleadstoSOLID-ROCKET-43’SEXPLOSIONMINUTESafterwards.
SOLID-ROCKET-43’SEXPLOSIONleadstoCHALLENGER’SEXPLOSIONimmediately.
PredictingbeforeCHALLENGER’SSPACE-LAUNCHrequiresfindingapredictivefeatureatleastMINUTESbeforeCHALLENGER’SEXPLOSION.
34
CheckingdetailforpredictingCHALLENGER’SEXPLOSIONMINUTESbeforeithappens.
Sincethelaunchisminutesbeforetheexplosion,anexplanationforpreventionmustallowpredic-tiontobedoneatleastminutesbeforetheexplosionaswell.Todecidewhethertheexplanationdoesso,ACCEPTERappliesthetestsforpredictivenessdescribedintheprevioussection.Thecoldnessofthesealoccursearlyenoughtoprovidewarning,andisdistinctive,predictive,andknowable.Consequently,ACCEPTERacceptstheexplanationasbeingusefulforanastronaut’sprediction,allowinghimtomonitorandintervene:oncolddays,theastronautcanrefusetofly.
7.4Evaluationdimensionsforactors’contributionstoanoutcome
Tomaintaineffectiveperformance,anyactorintheworldneedswaysofjudgingtheappropriate-nessofitsactions.Whenasurprisinglygoodorbadoutcomeoccurs,asystemmaybenefitbyexplainingwhocontributedtotheevent.Byidentifyingtheactorsinvolved,andascribingpraiseorblamefortheirroles,itmaybepossibletoinfluencetheirfuturebehavior.Also,bylearningaboutthe(possiblyunexpected)goodandbadramificationsofothers’behavior,thesystemcanlearnaboutpossibleproblemsandopportunitiestoconsiderwhenplanningitsownfutureactions,formingnewstrategiesforguidingitsownbehavior.
Thesegoalsprompttheexplanationpurposeofidentifyingactors’contributionstoanaction,andascribingpraiseorblame.Thiscanbedoneaccordingtothedesirabilityoftheoutcome,andofactionsleadingtoit.Inaddition,anactorcanalsobeblamed,evenifitwasimpossibletopredictorcontrolanoutcome,ifthatactorcontributedtotheoutcomethroughanundesirableact.Thebadresultstrengthenstheact’soriginalproscription:forexample,wemightblameadrugdealerforanaddict’sdeathbyoverdose,evenifdeathsfromoverdosearerelativelyunlikely.
TheoutputbelowshowsACCEPTER’sevaluationofblamefortheexplanationthattherace-horseSwalediedbecauseatraineraccidentallygavehimanoverdoseofperformance-enhancingdrugs.Itfirstcheckswhethertheactorshouldhaveanticipatedtheproblem,andcouldhavepre-ventedit:
35
CheckingPERFORMANCE-DRUG-OVERDOSE-BY-TRAINERforASSIGNING-BLAME.
ApplyingtestforBLOCKABILITY+TIMELINESS(canATHLETIC-TRAINER-1497blockafterpredictingoutcome?)toATHLETIC-TRAINER-1497’SM-PERFORMANCE-ENHANCEMENT-DRUGS.
ATHLETIC-TRAINER-1497couldhavepreventedinitiation
ofATHLETIC-TRAINER-1497’SM-PERFORMANCE-ENHANCEMENT-DRUGSsinceitsDRUGGERcontrolsinitiation.
However,ACCEPTERdeterminesthatperformanceenhancingdrugsarenotpredictiveoffataloverdose,sothetrainerwouldnothaveexpectedtheoutcome.Consequently,thetrainercannotbeblamedwithintentionallycausingSwale’sdeath.
ACCEPTERthencheckswhethergivingperformance-enhancingdrugsisinitselfundesirable.InACCEPTER’smemorynet,administeringperformanceenhancingdrugsisaspecificationofthecategoryforillegalactions,soitjudgesthedruggingasundesirable.Givingperformanceenhancingdrugsisannotatedasusuallybeingavoluntaryaction,soACCEPTERdecidesthattheexplanationgivescauseforblame.
7.5Summaryofevaluationdimensions
Table3summarizesourevaluationdimensions,andthesimpleheuristicsACCEPTERusestotestalongthem.Foradiscussionofthestrategiesnotdiscussedhere,andhowtheycombinetosatisfytheinformationrequirementsforotherpurposes,see(Leake,inpress).
Itshouldbenotedthatwhilethesystemusesdynamiccriteriatoevaluateforsomedimensions(e.g.,timeliness,distinctiveness,andrepairability),itscriteriaforotherdimensionsarestatic(e.g.,theobservabilitycomponentofknowability).Wedidnotinvestigatedynamiccharacterizationsofalldimensions,simplybecauseourmaineffortwasdevotedtoinvestigatingtherelationshipbetweenevaluationgoalsandtheneededdimensions.However,westronglyagreewiththear-gumentsin(DeJong&Mooney,1986)thatsuchcriteriamustbeabletodynamicallytakeintoaccountcurrentsystemknowledge.RicherandmoredynamiccharacterizationsofACCEPTER’sdimensionsinvolvemanyissuesforfutureresearch.Forexample,arichercharacterizationofknowabilitycriteriawouldhavetoinvolvereasoningaboutcompetingwaystogatherinformation,
36
Table3.
ACCEPTER’sheuristicsfortestinganeventorstateA,statedasacauseinanexplanation,alongeachevaluationdimension.
TracealongtheXP’sderivationofoutcomefromA,summingthe
Timeliness
standarddelaysfromantecedenttoconsequentofeachinferencerule.
Useroutineunderstandingmechanismtobuildupstandardexpec-Distinctiveness
tationsfromthebackgroundsituation,andintegrateAintothatcontext.Aisdistinctiveifitisunexpectedoranomalousinthatcontext.
CheckwhetherA,oritsabstractionsinmemory,isannotatedas
Knowability
usuallyobservable,orsearchforaplaninmemorythatcanbeappliedtodeterminewhetherAhasoccurred.
Predictivepower/causalforce
CheckwhethertheXPderivestheoutcomefromAbyasequenceofpredictivelinks(respectively,causallinks).
CheckifAiscausedbyastatestillineffect.Ifnot,assumeAisindependentofpriorcauses.
SearchmemoryforastandardrepairplanforanyabstractionofA.Lookfordirectinvolvementoftheactorasanactor,director,or(forblockabilityonly)supplierofA.
CheckifactiondescribedbyAisaspecificationofillegal-activity.
IndependenceRepairabilityControllabilityDesirability
37
theirlikelycosts,andtheirchanceofsuccess;(Hunter,1990)discussessomeofthesedirectionsinthecontextofknowledgeplanning.
8Thevalueofgoal-basedevaluation
Theprecedingsectionssketchedourapproachtogoal-basedexplanationevaluation.Inthissection,weputthatapproachinperspective,discussinghowagoal-basedevaluationmodulecancontributetoanoverarchingexplanation-basedsystem.Weadvancethreemainpoints:First,thatgoal-basedevaluationallowslearningtobefocusedmoreeffectivelythaninpreviousapproaches.Second,thatitfacilitatesconstructionofusefulexplanationsinacase-basedexplanation,and,moregenerally,makesitpossibletoreliablybuildexplanationsforsystemswithmultipletypesofgoals.Third,thatitoffersavaluablenewwaytodealwiththeimperfecttheoryprobleminexplanation-basedlearning,byallowinganexplanation-basedsystemtolearneffectivelydespitecertainimperfectionsinitsdomaintheory.
Focusingexplanationtowardsknowledgegaps:Ourexplanationprocesscentersaroundex-plaininganomalies.Inourdiscussionofevaluationforroutineunderstanding,wedescribedAC-CEPTER’srequirementthatexplanationsaccountnotonlyfortheevent,butforwhyexpectationsfailed.Thisdiffersfromapproachessuchas(Mooney,1990),whichconcentrateonaccountingforwhytheeventoccurred.Thedifferenceisimportanttodecidingwhichbeliefstorepair,andwhattolearnfromanewsituation.IfwewanttoexplainwhybasketballteamAdefeatedteamBinaclosegame,theexplanationswewillseekwillbequitedifferentifweexpectedBtowin(inwhichcasewemightrefertoinjuriesofB’splayers),orifweexpectedAtowinbyalargemargin(inwhichcasewemightrefertoteamAbeingover-confident).Ingeneral,goal-basedevaluationallowslearningtofocusontheaspectsofasituationthatareimportant:thoserelevanttosystemgoals.ACCEPTERcanjudgeasingleexplanationacceptableforonepurpose,butnotforanother.forexample,oneofACCEPTER’sstoriesinvolvestherecallofadefectivecar.Whenthesystem’spurposeistofindwaysofpredictingdefects,itacceptstheexplanationthatthemanu-facturerhasbadqualitycontrol;whenitspurposeistofindrepairpoints,itrejectsthatexplanationasinsufficient,andacceptsanexplanationthatpointstothespecificpartthatfailed.
38
Guidingexplanationconstructionincase-basedexplanation:Howtocontrolexplanationconstructionisadifficultissuethathasreceivedsurprisinglylittleattention.Manyexplanation-basedsystemsconstructexplanationsbyundirectedchaining,whichrisksoverwhelminginferencecostforanybutthemostsimpleexplanations(Rieger,1975).TheSWALEsystemaddressesthisproblembyusingcase-basedreasoningtobuildnewexplanations.Ratherthanexplainingfromscratch,itappliespriorexperiencebyretrievingandadaptingexplanationsfromsimilarpastepisodes.Thecase-basedapproachfacilitatesconstructionofcomplicatedexplanations,byre-usingpriorreasoningwheneverpossible.Inaddition,whennewandoldsituationsarequitesimi-lar,thecase-basedapproachcangenerateexplanationsthataremorelikelytobevalid:ratherthanbeingarbitraryrulecombinations,thehypothesesitbuildsaresupportedbypriorexperience.Unliketraditionalexplanation-basedsystems,whichcanrelyonallcandidateexplanationsbeingintheproperformfortheirsingletask(e.g.,showingsufficientconditionsforconceptmem-bershipfortheconceptrecognitiontaskin(Mitchelletal.,1986)),acase-basedexplainerreusesexplanationsthatmayhavebeenconstructedinverydifferentcontexts,andforverydifferentgoals.Consequently,unlikesingle-purposesystemsthatcantailorexplanationconstructiontotheirgoals,andrelyoninitialexplanationconstructiontoprovideanappropriatetypeofexplanation,acase-basedexplainercannotbeassuredofstartingwithanexplanationthatincludesappropri-ateinformation(Leake,1989b).Consequently,itmusthaveameansfordeterminingwhetheranexplanationcontainsthespecificinformationitneeds,andtoidentifygapstofillthroughexplana-tionadaptation.Ourevaluationprocessprovidesthatguidance,enablingacase-basedexplainertoreliablyusecasesfromamulti-purposecaselibrary.Thisguidancecouldalsobeappliedtoanyexplanationconstructionsystemthatmustbuildexplanationsformultiplepurposes.
Dealingwiththeimperfecttheoryproblem:Explanation-basedlearningresearchtraditionallyconsidersexplanationstobedeductiveproofsofconceptmembership(Mitchelletal.,1986).Inthisframework,thestructureoftheproofassuresthattheexplanationpointstoasufficientsetoffactorsforconceptmembership.However,ifweseektoexplainreal-worldevents,noexplanationcanincludeallthecausally-relevantfactors.AsMitchelletal.observe,real-worlddomaintheoriesareoftenbothincompleteandintractable.
Responsestotheimperfecttheoryproblemproposemethodsforrepairingthetheory’sdefects.Forexample,(Dietterich&Flann,1988)suggeststhatwhenadomaintheoryallowsmultiple
39
incompatibleexplanations,inductionoverexplanationsforasetoftrainingexamplescanbeusedtofindaspecializeddomaintheorythatexplainsthepositiveexamples,butnoneofthenegativeones.(Rajamoney,1988)advocatesexperimentationtodeterminehowtoextendorrepairadomaintheoryinresponsetoproblemssuchasmultipleincompatibleexplanations,ortheinabilitytoconstructanycompleteexplanation.Unfortunately,theseapproachesarenotalwayspractical:itmaybenecessarytoactwithouthavingobservedenoughexamplestorepairadomaintheoryusinginductionoverexplanations,andmaybeinfeasibletoperformtheexperimentsneededtodoexperimentation-basedtheoryrevision.
However,theinabilitytoconstructacompleteexplanation,ortoruleoutincompatiblealter-nativeexplanations,doesnotnecessarilyinterferewithhumanuseofexplanation.Peopleoftenaccomplishtheirgoalsusingfragmentaryexplanations.Someonewithlittleautomotiveknowl-edgemaybuyausedcar,andnoticethatitoftenfailstostartoncolddays.Althoughthebuyerwouldprobablybeunabletogenerateacompleteexplanation,itwouldstillbepossibletoformthepartialexplanationthatcoldisoneofthecausestheproblem.Thishypothesisdoesnotgivesufficientconditionsforthefailure,sincethecarsometimesstartsdespitethecold,anditwouldprobablynotbefeasibleforanovicetoidentifytheotherfactorsthatareinvolved.Nevertheless,thepartialexplanationisstilluseful:itcanbeusedtodecidetokeepthecarinthegarageoncoldnights.
Likewise,choosingbetweencompetingincompatibleexplanationsmaynotbepossible,ormaynotbeworthwhileevenifitispossible:apolicemanarrestingamurdererdoesnotneedtochoosebetweentheincompatibleexplanationsthatthemurdererwasmotivatedbyjealousy,orbyfinancialgain,aslongasthemurdererproposedbyallcompetingexplanationsisthesameperson.Thusimperfectionsintheorydonothavetointerferewiththeuseofanexplanation.Bygivingaprincipledaccountofwhichaspectsofexplanationsareimportant,andwhicharenot,ourgoal-basedevaluationcriteriadeterminewhenanimperfectexplanationcansimplybeapplied,withouthavingtoextendthetheorytoresolvedefectsorchoosebetweencompetingalternatives.Allowingexplanation-basedprocessingofpartialandimperfectexplanationssignificantlyextendsthecircumstancesinwhichasystemcanapplyexplanation-basedtechniques.
40
9Conclusion
Evaluationofexplanationsisadynamicprocess:anexplanation’sgoodnessdependsonwhetheritsatisfiestheexplainer’scurrentneedsforinformation.Anexplanationthatisgoodforonepurposemaybeirrelevanttoanother,ormaygiveinadequateinformationforit.Forsomepurposes,averyvagueorincompleteexplanationmaybesufficient;forothers,certainaspectswillneedtobedescribedingreatdetail.
Inordertojudgethegoodnessofanexplanation,weneedtoknowhowitwillbeused,andwhatinformationthatuserequires.Thispapersketcheshowgoalspromptplansthatinturntriggerbasicexplanationpurposes,andtracestheirinformationrequirements.Tojudgewhetherexplanationssatisfytheserequirements,ACCEPTERusesheuristicsforjudgingcausesalongcombinationsofsimpleevaluationdimensions.
Theinformationrequiredfortheexplanationpurposeswehavedescribedcanbecharacterizedintermsofnineevaluationdimensions(timeliness,knowability,distinctiveness,predictivepower,causalforce,independence,repairability,controllability,anddesirability),givingacompactwayofdescribingneedsforinformation,andsuggestingclassesofevaluationheuristicstorefineinfutureresearch.
Byprovidingagoal-sensitivewaytojudgetheinformationcontainedinaparticularexplana-tion,ACCEPTER’sapproachextendsconsiderablytheapplicabilityofexplanation-basedprocess-ing,givingameansfordecidingwhethertoacceptandlearnfromanimperfectexplanation.Itisafirststeptowardsamodelofexplanationasadynamic,goal-drivenprocess,integratedfullywiththesystemtasksitserves.
41
References
Ahn,W.,Mooney,R.,Brewer,W.,&DeJong,G.(1987).Schemaacquisitionfromoneexample:
Psychologicalevidenceforexplanation-basedlearning.ProceedingsoftheNinthAnnual
ConferenceoftheCognitiveScienceSociety(pp.50–57).Seattle:CognitiveScienceSociety.Collins,G.,&Birnbaum,L.(1988).Anexplanation-basedapproachtothetransferofplan-ningknowledgeacrossdomains.Proceedingsofthe1988AAAISpringSymposiumonExplanation-basedLearning(pp.107–111).Stanford:AAAI.
Cullingford,R.(1978).ScriptApplication:ComputerUnderstandingofNewspaperStories(Tech-nicalReport116).NewHaven:YaleUniversityComputerScienceDepartment.DeJong,G.,&Mooney,R.(1986).Explanation-basedlearning:Analternativeview.Machine
Learning,1(1),145–176.Boston:Kluwer.Dietterich,T.,&Flann,N.(1988).Aninductiveapproachtosolvingtheimperfecttheoryproblem.
Proceedingsofthe1988AAAISpringSymposiumonExplanation-basedLearning(pp.42–
46).Stanford:AAAI.
Granger,R.(1980).AdaptiveUnderstanding:CorrectingErroneousInferences(TechnicalReport
171).NewHaven:YaleUniversityComputerScienceDepartment.
Hammond,K.(1989).Case-BasedPlanning:ViewingPlanningasaMemoryTask.SanDiego:
AcademicPress.
Hanson,N.(1961).PatternsofDiscovery.Cambridge:CambridgeUniversityPress.
Heider,F.(1958).ThePsychologyofInterpersonalRelations,volumeXVofCurrentTheoryand
ResearchinMotivation.NewYork:Wiley.Hobbs,J.,Stickel,M.,Appelt,D.,&Martin,P.(1990).Interpretationasabduction(Technical
Report499).MenloPark:SRIInternational.Hunter,L.(1990).Planningtolearn.ProceedingsoftheTwelfthAnnualConferenceoftheCogni-tiveScienceSociety(pp.261–268).Cambridge:CognitiveScienceSociety.
42
Kass,A.(1986).Modifyingexplanationstounderstandstories.ProceedingsoftheEighthAn-nualConferenceoftheCognitiveScienceSociety(pp.691–696).Amherst:CognitiveScience
Society.
Kass,A.,&Leake,D.(1988).Case-basedreasoningappliedtoconstructingexplanations.Kolod-ner,J.(Ed.),ProceedingsoftheCase-BasedReasoningWorkshop(pp.190–208).ClearwaterBeach:DARPA.
Kedar-Cabelli,S.(1987).Formulatingconceptsaccordingtopurpose.ProceedingsoftheSixth
AnnualNationalConferenceonArtificialIntelligence(pp.477–481).Seattle:AAAI.Keller,R.(1987).TheRoleofExplicitContextualKnowledgeinLearningConceptstoImprove
Performance.PhDthesis,RutgersUniversity.Keller,R.(1988).Operationalityandgeneralityinexplanation-basedlearning:Separatedi-mensionsoroppositeendpoints?Proceedingsofthe1988AAAISpringSymposiumon
Explanation-basedLearning(pp.153–157).Stanford:AAAI.
Kelley,H.H.(1967).Attributiontheoryinsocialpsychology.Levine,D.(Ed.),NebraskaSympo-siumonMotivation.Lincoln,NE:UniversityofNebraskaPress.
Kolodner,J.(1984).RetrievalandOrganizationalStrategiesinConceptualMemory.Hillsdale,
NJ:LawrenceErlbaumAssociates.
Lalljee,M.,&Abelson,R.(1983).Theorganizationofexplanations.Hewstone,M.(Ed.),Attri-butionTheory:SocialandFunctionalExtensions.Oxford:Blackwell.
Lalljee,M.,Watson,M.,&White,P.(1982).Explanations,attributions,andthesocialcontextof
unexpectedbehavior.EuropeanJournalofSocialPsychology,12,17–29.
Leake,D.(1988a).Evaluatingexplanations.ProceedingsoftheSeventhNationalConferenceon
ArtificialIntelligence(pp.251–255).Minneapolis:AAAI.
Leake,D.(1988b).Usingexplainerneedstojudgeoperationality.Proceedingsofthe1988AAAI
SpringSymposiumonExplanation-basedLearning(pp.148–152).Stanford:AAAI.
43
Leake,D.(1989a).Anomalydetectionstrategiesforschema-basedstoryunderstanding.Proceed-ingsoftheEleventhAnnualConferenceoftheCognitiveScienceSociety(pp.490–497).Ann
Arbor:CognitiveScienceSociety.
Leake,D.(1989b).Theeffectofexplainergoalsoncase-basedexplanation.Hammond,K.
(Ed.),ProceedingsoftheCase-BasedReasoningWorkshop(pp.290–294).PensacolaBeach:DARPA.
Leake,D.(inpress).EvaluatingExplanations.Hillsdale,NJ:LawrenceErlbaumAssociates.Leake,D.,&Owens,C.(1986).Organizingmemoryforexplanation.ProceedingsoftheEighth
AnnualConferenceoftheCognitiveScienceSociety(pp.710–715).Amherst:CognitiveSci-enceSociety.
Lebowitz,M.(1980).GeneralizationandMemoryinanIntegratedUnderstandingSystem(Tech-nicalReport186).NewHaven:YaleUniversityComputerScienceDepartment.Mackie,J.(1965).Causesandconditions.AmericanPhilosophicalQuarterly,(4).
Mehlman,R.,&Snyder,C.(1983).Excusetheory:Atestoftheself-protectiveroleofattributions.
JournalofPersonalityandSocialPsychology,49(4),994–1001.
Minton,S.(1988).Quantitativeresultsconcerningtheutilityofexplanation-basedlearning.Pro-ceedingsoftheseventhnationalconferenceonartificialintelligence(pp.564–569).SaintPaul:AAAI.
Mitchell,T.,Keller,R.,&Kedar-Cabelli,S.(1986).Explanation-basedgeneralization:Aunifying
view.MachineLearning,1(1),47–80.Mooney,R.(1990).AGeneralExplanation-basedLearningMechanismanditsApplicationto
NarrativeUnderstanding.SanMateo,CA:MorganKaufmann.Moore,J.,&Swartout,W.(1989).Areactiveapproachtoexplanation.ProceedingsoftheEleventh
InternationalJointConferenceonArtificialIntelligence(pp.1504–1510).Detroit:IJCAI.
44
Mostow,D.J.(1983).Machinetransformationofadviceintoaheuristicsearchprocedure.Michal-ski,R.,Carbonell,J.,&Mitchell,T.(Eds.),MachineLearning:AnArtificialIntelligence
Approach.Cambridge:TiogaPublishingCompany.
Ng,H.,&Mooney,R.(1990).Ontheroleofcoherenceinabductiveexplanation.Proceedingsof
theEighthNationalConferenceonArtificialIntelligence(pp.337–342).Boston:AAAI.Paris,C.(1987).
Combiningdiscoursestrategiestogeneratedescriptionstousersalonga
naive/expertspectrum.ProceedingsoftheTenthInternationalJointConferenceonArtificialIntelligence(pp.626–632).Milan,Italy:IJCAI.
Pazzani,M.J.(1988).Selectingthebestexplanationforexplanation-basedlearning.1988Spring
SymposiumSeries:Explanation-BasedLearning(pages165–169).Stanford:AAAI.Rajamoney,S.(1988).Experimentation-basedtheoryrevision.Proceedingsofthe1988AAAI
SpringSymposiumonExplanation-basedLearning(pp.7–11).Stanford:AAAI.
Rajamoney,S.,&DeJong,G.(1988).Activeexplanationreduction:Anapproachtothemul-tipleexplanationsproblem.ProceedingsoftheFifthInternationalConferenceonMachineLearning(pp.242–255).AnnArbor:MachineLearning.
Ram,A.(1989).Question-drivenunderstanding:Anintegratedtheoryofstoryunderstanding,
memoryandlearning(TechnicalReport710).NewHaven:YaleUniversityComputerScience
Department.
Rieger,C.(1975).Conceptualmemoryandinference.ConceptualInformationProcessing.Ams-terdam:North-Holland.
Riesbeck,C.(1981).Failure-drivenremindingforincrementallearning.ProceedingsoftheSev-enthInternationalJointConferenceonArtificialIntelligence(pp.115–120).Vancouver,B.C.:IJCAI.
Schank,R.(1972).Conceptualdependency:Atheoryofnaturallanguageunderstanding.Cogni-tivePsychology,3(4),552–631.Schank,R.(1982).DynamicMemory:ATheoryofLearninginComputersandPeople.Cam-bridge:CambridgeUniversityPress.
45
Schank,R.(1986).ExplanationPatterns:UnderstandingMechanicallyandCreatively.Hillsdale,
NJ:LawrenceErlbaumAssociates.Schank,R.,&Abelson,R.(1977).Scripts,Plans,GoalsandUnderstanding.Hillsdale,NJ:
LawrenceErlbaumAssociates.Schank,R.,&Leake,D.(1989).Creativityandlearninginacase-basedexplainer.Artificial
Intelligence,(40).AlsoinCarbonell,J.(Ed.),1990,MachineLearning:Paradigmsand
Methods,Cambridge:MITPress.
Segre,A.M.(1987).Ontheoperationality/generalitytradeoffinexplanation-basedlearning.Pro-ceedingsoftheTenthInternationalJointConferenceonArtificialIntelligence(pp.242–248).Milan,Italy:IJCAI.
Shortliffe,E.(1976).Computer-basedmedicalconsultations:MYCIN.NewYork:American
Elsevier.Snyder,C.,Higgens,R.,&Stucky,R.(1983).Excuses:MasqueradesinSearchofGrace.New
York:Wiley.Souther,A.,Acker,L.,Lester,J.,&Porter,B.(1989).Usingviewtypestogenerateexplanationsin
intelligenttutoringsystems.ProceedingsoftheEleventhAnnualConferenceoftheCognitive
ScienceSociety(pp.123–130).AnnArbor:CognitiveScienceSociety.
Swartout,W.(1983).XPLAIN:asystemforcreatingandexplainingexpertconsultingprograms.
ArtificialIntelligence,(21),285–325.
Thagard,P.(1989).Explanatorycoherence.TheBehavioralandBrainSciences,12(3),435–502.VanFraassen,B.(1980).TheScientificImage,chapter5.Oxford:ClarendonPress.Wilensky,R.(1983).PlanningandUnderstanding.Reading,MA:Addison-Wesley.
46
因篇幅问题不能全部显示,请点此查看更多更全内容