TimeSeriesAnalysisofUnequallySpacedData:IntercomparisonBetweenEstimatorsofthePowerSpectrum
V.V.Vityazev
AstronomyDepartment,St.PetersburgUniversity,Bibliotechnayapl.2,Petrodvorets,St.Petersburg,198904,Russia.
Abstract.ItisshownthatthelikenessoftheperiodogramandtheLS-spectrum(bothestimatorsofthepowerspectrumarewidelyusedinthespectralanalysisoftimeseries),dependsonthepropertiesofthespectralwindowW(ω)correspondingtothedistributionoftimepoints.Themainresultsare:a)alltheestimatorsevaluatedatfrequencyωareidenticalifW(2ω)=0;b)theSchusterperiodogramdiffersfromtheLS-spectraatthefrequenciesω=ωˆk/2,whereωˆkarethefrequenciesatwhichthespectralwindowhaslargesidepeaksduetoirregulardistributionoftimepoints.Twoexamplesforsituationstypicalinastronomyillustratetheseconclusions.
1.Introduction
Invariousbranchesofastronomy,wefacetheproblemoffindingperiodicitieshiddeninobservations.Ifthedataareregularlyspacedintime,theSchusterperiodogramisthebasictoolforevaluatingthepowerspectra(Marple1987;Terebizh1992).Unfortunately,astronomicalobservationsareirregularforvari-ousreasons:day-timechanges,weatherconditions,positionsoftheobjectunderobservations,etc.Presentdaytheoryandpracticeofthespectralanalysisofun-equallyspacedtimeseriesarebasedontwoapproaches.ThefirstoneemploystheSchusterperiodogram(Deeming1975;Robertsetal.1987).Thesecondoneusestheprocedureoftheleastsquaresfittingofasinusoidtothedata(Barning1962;Lomb1976;Scargle1982)withresultingestimatorsknownastheLS-spectra.ThemostvaluablefeatureoftheLS-spectraiswelldefinedstatisticalbehavior.Atthesametime,theLS-spectraloseveryimportantproperties:descriptionintermsofthespectralwindow,connectionwiththecorrelationfunction,etc.Ontheotherhand,theSchusterperiodogramofagappedtimeseriessatisfiesallthefundamentalrelationsoftheclassicalspectralanalysis,butitsstatisticalpropertiesarecomplicatedascomparedtothecaseofregu-lardata.Itisworthmentioningthatdespitedifferenttheoreticalfoundations,theSchusterperiodogramandtheLS-spectrafrequentlyturnouttobealmostidentical.Thissimilarityrequiresanexplanation,andwearetryingtofindsituationswhentheSchusterperiodogramandtheLS-spectraareveryclosetoeachotherordiffergreatly.Theultimategoalofthisstudyistoclarifythepropertiesofvarioustechniqueswhichareusedtoderivetheperiodicitiesfromtheunequallydistributeddata.
166
© Copyright 1997 Astronomical Society of the Pacific. All rights reserved.
TimeSeriesAnalysisofUnequallySpacedData
2.
TwoEstimatorsofthePowerSpectrum
167
ForasetofNobservationsxk=x(tk),k=0,1,...,N−1withzeromeanobtainedatarbitrarytimestk,wecansetupthemodel
f(t)=
where
2i=1
aiφi(t),(1)
φ1(t)=cosωt,φ2(t)=sinωt.(2)
Usingthefollowingnotation
(p,q)=
1
N2
−iωtk
|
N−1k=0
xke−iωtk|2.
(4)
Ifthesignalcontainsasinefunctionoffrequencyω0,thentheproduct
xkemakesalargecontributiontoSprovidedthatω=ω0.Inotherwords,theSchusterperiodogram,tothelimitofnormalizingfactor,isasquareofthecorrelationcoefficientbetweenthedataandaharmonicfunction.
ThealternativeestimatorofthepowerspectrumbasedontheleastsquaresfittingofthesinefunctiontothedatawasproposedbyLomb(1976)andScargle(1982).Theirapproachisbasedontheintroductionofthenewtimepoints
1
tˆk=tk−
kcos2ωtk
,(5)
wherethetimeshiftprovidestheorthogonalityofthefunctions
ˆ1(t)=cosωtˆφk,
ˆ2(t)=sinωtˆφk.
(6)
UnderthisassumptiontheLS-spectrumlooksasfollows:
L(ω)=
1
ˆ12φ
+ˆ2)2(x,φ
168Vityazev
wherethespectralwindowW(ω)is
W(ω)=
1
sin2(mω∆T/2)
n2sin2(ω∆t/2)
m∆T
j,j=1,2,...(11)
satisfyEq.(8),providedthatj=m/2,m,...ifmisevenandj=m,2m,...,ifmisodd.3.2.
ObservationswithaLongGap
Consideredhereisasituationwheretwosetsofobservations(eachoneconsistingofnsuccessivepoints)areseparatedbypmissingpointsformingthegap.Asearlier,allthepointsaresupposedtoberegularlyspacedoverthetimeinterval∆t=const.Now,forthespectralwindowwehave(Vityazev1994)
W(ω)=
sin2(nω∆t/2)
(n+p)∆t
(j+
1
TimeSeriesAnalysisofUnequallySpacedData
4.
Conclusions
169
TheLS-spectragainedpopularityduetothefactthattheyretaintheexponentialdistributionoftheiraccountswhenthetimeseriesisassumedtobewhitenoise.NowweseethatatfrequenciesthatsatisfyEq.(8)theSchusterperiodogramretainstheexponentialdistributiontoo.
TheSchusterperiodogramdiffersfromtheLS-spectraonlyatthefrequen-ciesthatsatisfythecondition1−W(2ω)≪1.ItmeansthatthediscrepanciesbetweentheSchusterperiodogramandtheLS-spectraarelargewhenthetimeseriescontainaharmonicofthefrequency,thedoublevalueofwhichcoincideswiththefrequencyatwhichthespectralwindowhasalargesidepeak.Inthecaseofperiodicalgapsithappenswhentheperiodofasignalhiddeninthedataisonehalftheperiodofthegaps.Inthissituation(Vityazev1997a),thespectralestimationfacesunrealisticintensitiesofthespectralpeaksandthestrongdependenceoftheheightsofpeaksonthephaseofthesignal.Itisveryimportanttoemphasizethattheseproblemscomenotfromthechoiceofthetooltoevaluatethepowerspectrum;theyoriginatefrommixingtwosourcesoftheperiodicities:oneisthephysicalprocessthatweobserveandanotheroneisaperiodicalinterruptionofobservations.Inastronomy,therotationandrevolutionoftheEarthimposediurnalandannualcyclesontheEarth-basedobservations.TheperiodshiddeninobservationsoftheSun,stars,quasars,etc.,arehardlyconnectedphysicallywiththeperiodsspecifictotheEarth.Fortheseobservations,theprobabilityofmixingperiodicitiesisnegligible.Onthecontrary,ifwestudytheEarthfromtheEarth(suchisthecasewithastrometricobservationsoftheEarth’srotationparameters),thenthesemi-annualperiodintheEarth’srotationinterfereswiththeannualgapsinobservations.
ForfurtherdetailsthereaderisreferredtoVityazev(1997a,1997b).References
Barning,F.J.M.1962,B.A.N.,17,N1,22Deeming,T.J.1975,Ap&SS,36,137Lomb,N.R.1976,Ap&SS,39,447
Marple,Jr.,S.L.1987,DigitalSpectralAnalysiswithApplications(Englewood
Cliffs,NJ:Prentice-Hall)
Roberts,D.H.,Lehar,J.,&Dreher,J.W.1987,AJ,93,968Scargle,J.D.1982,ApJ,263,835
Terebish,V.Yu.1992.TimeSeriesAnalysisinAstrophysics(Moscow:Nauka)Vityazev,V.V.1994,Astron.andAstrophys.Tr.,5,177Vityazev,V.V.1997a,A&A,inpressVityazev,V.V.1997b,A&A,inpress
因篇幅问题不能全部显示,请点此查看更多更全内容